Introduction to Computational Mathematics
Introduction

Computational Mathematics:

- Concerned with the design, analysis, and implementation of algorithms for the numerical solution of problems that have no tractable analytical solution.

- Combines:
 1. Numerical analysis
 2. Mathematical modeling
 3. Computer science
 4. Applied mathematics
 5. Science and engineering.

- Recognized as a genuine field of the mathematical sciences.
• Why is computational mathematics important?
• Consider the following simplified model of the scientific process:

Scientific process

- Physical system
- Observe and collect data
- Conceptual interpretation
- Make predictions (get rich)
- Interpret results and compare to experimental data
- Solve the model
- Refine based on results
- Apply physical laws
- Mathematical model
- Success

• Computational math fits in the solution phase, and often in the interpretation phase.
Scientific process

- Why is computational mathematics important?
- Consider the following simplified model of the scientific process:

 Physical system

 Observe and collect data

 Conceptual interpretation

 Make predictions (get rich)

 Refine based on results

 Interpreting results and compare to experimental data

 Model for fluid dynamics:
 \[
 \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}
 \]
 \[
 \nabla \cdot \mathbf{u} = 0
 \]

 Why: The resulting models can essentially never be solved completely using analytical (pencil and paper) methods.
Simple example with no analytical solution

- Consider the function (called the error function):
 \[f(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt \]

- Suppose some set of measurements follow a normal distribution with mean zero and standard deviation \(\sigma \).

- Then the probability that the error of a measurement is within \(\pm \varepsilon \) is given by
 \[f \left(\frac{\varepsilon}{\sigma \sqrt{2}} \right) \]

- The definite integral defining \(f \) cannot be determined in terms of elementary functions for a general \(\varepsilon \).

- One must result to numerical approximation!
Much more complicated examples

\[2^{43,112,609} - 1\]
“Computational science now constitutes what many call the third pillar of the scientific enterprise, a peer alongside theory and physical experimentation.”

Report to the President : Computational Science : Ensuring America’s Competitiveness”, June 2005.
Algorithms

- Algorithms are the main product of numerical analysis.
- A mathematical algorithm is a formal procedure describing an ordered sequence of operations to be performed a finite number of times.
- Algorithms are like recipes with the basic building blocks of addition, subtraction, multiplication, and division, as well as programming constructs like for, while, and if.

Simple Example: Compute the \((N+1)\)-term Taylor series approximation to \(e^x\)

\[
e^x \approx \sum_{k=0}^{N} \frac{x^k}{k!}
\]

Algorithm written in pseudo code

Input: \(x, N > 0\)
Output: \((N + 1)\)-term Taylor series approximation to \(e^x\)

\[
taylor=1; \\
factorial=1; \\
xpowk=1; \\
for \ k = 1 \ to \ N \ do \\
\quad factorial = factorial \times k \\
\quad xpowk = xpowk \times x \\
\quad taylor = taylor + xpowk/factorial \\
end for
\]
• Three primary concerns for algorithms:
 - **Accuracy**: How good is the algorithm at approximating the underlying quantity.
 - **Stability**: Is the output of the algorithm sensitive to small changes in the input data.
 - **Efficiency**: How much time does it take the algorithm to obtain a reasonable approximation.

• We will briefly discuss these for the algorithms considered in this course; a more thorough discussion and analysis is part of a more advanced course in numerical analysis.

• Some other important concerns include robustness, storage, and parallelization.
Algorithms

- Algorithms can be classified into two types:

 - **Direct methods**: Obtain the solution in a finite number of steps, assuming no rounding errors.

 Example: Solving a linear system with Gaussian elimination

 - **Iterative methods**: Generate a sequence of approximation that converge to the solution as the number of steps approaches infinity.

 Example:

 We learn later that the square root of a positive number a can be obtained by the sequence: $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$.

 For example, let $a = 2$ and $x_0 = 3$. The table below shows the results

 | n | x_n | $|x_n - \sqrt{2}|$ |
 |-----|-------|-------------------|
 | 0 | 3.000000000000000000 | 1.58578643762690 × 10^0 |
 | 1 | 1.833333333333333333 | 4.19119770960238 × 10^-1 |
 | 2 | 1.462121212121212121 | 4.79076497481170 × 10^-2 |
 | 3 | 1.414998429894803 | 7.84867521707922 × 10^-4 |
 | 4 | 1.414213780047198 | 2.17674102520604 × 10^-7 |
 | 5 | 1.414213562373112 | 1.66533453693773 × 10^-14 |
 | 6 | 1.414213562373095 | 2.22044604925031 × 10^-16 |
Errors

• Major sources of errors in computational math:

 - **Truncation errors**: Result from the premature termination of an infinite computation.

 Example:
 \[
 e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}
 \]

 These are the primary concern of computational math.

 - **Round off errors**: Result from using floating point arithmetic.

 Less significant than truncation errors, but nevertheless can result in catastrophic problems (some examples).

• Other errors that must be accounted for:

 Human errors, modeling errors, and measurement errors.
Measuring errors

- This course is about learning numerical methods for approximating solutions to problems.

- Let p be an approximation to p^*, then we have two ways of measuring the error:
 - **Absolute error:** $|p - p^*|$
 - **Relative error:** $\frac{|p - p^*|}{|p^*|}$

- Relative error is typically the best, but it depends on the problem.

- To illustrate this point consider the following simple example

 Example:

 (a) $p = 3.100$ and $p^* = 3.000$
 (b) $p = 3.100 \times 10^{-4}$ and $p^* = 3.000 \times 10^{-4}$
 (c) $p = 3.100 \times 10^{3}$ and $p^* = 3.000 \times 10^{3}$

 What are the absolute and relative errors in these cases? Which value makes the most sense to use?
Overview of the course

- We will cover the following material:
 - Floating point arithmetic
 - Solving large linear systems of equations
 - Interpolation and curve fitting
 - Solving non-linear equations and optimization
 - Numerical integration and differentiation
 - Least squares methods for over/underdetermined problems.
 - Numerical solutions of initial and boundary value problems.

- We will discuss the methods associated with these topics and the corresponding MATLAB routines.

- You will develop your own MATLAB codes for solving some applied problems.