The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism

Samuel Coskey

Rutgers University

Joint Meetings, 2008

Torsion-free abelian groups of finite rank A concise and selective history

1937 Baer classified the torsion-free abelian groups of rank 1.

- 1998 Hjorth proved that the classification problem for torsion-free abelian groups of rank 2 is strictly more complex than that for the rank 1 groups.
- 2001 Thomas proved that the problem for rank n + 1 groups is strictly more complex than the problem for rank n.

Question

What does it mean for one classification problem to be *strictly more complex than another?*

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism $\circ \bullet \circ \circ \circ \circ \circ \circ$

Standard Borel spaces

Definition

A standard Borel space is a Polish space X equipped just with its σ -algebra of Borel sets.

Example

 $\mathbb{R}, \mathbb{Q}_{p}, \mathcal{P}(\mathbb{N})$, Borel subsets of these

Example

The space TFA_n of torsion-free abelian groups of rank n.

This is the standard Borel space consisting of those $A \in \mathcal{P}(\mathbb{Q}^n)$ which are subgroups of \mathbb{Q}^n of rank n.

Remark

Now, studying the classification problem for torsion-free abelian groups of rank n amounts to studying the isomorphism equivalence relation on TFA_n .

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism $\infty\bullet\!\circ\!\circ\!\circ\!\circ\!\circ$

Borel reducibility of equivalence relations

Definition

Let E, F be equivalence relations on standard Borel spaces X, Y. Then E is Borel reducible to F (written $E \leq_B F$) iff there exists a Borel map $f : X \to Y$ satisfying:

$$a E b \iff f(a) F f(b)$$

Meaning...

- Any set of invariants for F can be used as invariants for E.
- The *E*-classification problem on *X* is no harder than the *F*-classification problem on *Y*.

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism ${\rm ooo}{\bullet}{\rm oooo}$

Example of a Borel reduction

Torsion-free abelian groups

Definition

Let \cong_n be the isomorphism equivalence relation on the space TFA_n of torsion-free abelian groups of rank n.

Fact

 $\cong_n \leq_B \cong_{n+1}$

Proof.

Use the map $A \mapsto A \oplus \mathbb{Q}$.

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism 00000000

Hjorth's 1998 theorem and Thomas's 2001 theorem

Theorem

The classification problem for torsion-free abelian groups of rank n increases strictly in complexity with the rank n. In symbols:

$$\cong_1 <_B \cong_2 <_B \cong_3 <_B \cdots <_B \cong_n <_B \cdots$$

(The first $<_B$ is Hjorth's part.)

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism ${\rm coccos}{\rm oco}$

Quasi-isomorphism

Definition

Subgroups $A, B \leq \mathbb{Q}^n$ are said to be quasi-isomorphic (written $A \sim_n B$) iff A and B have isomorphic subgroups of finite index.

Thomas found the quasi-isomorphism relation simpler to work with and initially proved:

Theorem (Thomas, 2001)

 $\sim_1 <_B \sim_2 <_B \sim_3 <_B \cdots <_B \sim_n <_B \cdots$

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism 0000000

Isomorphism versus quasi-isomorphism The question

Theorem (Corner)

There exists a torsion-free abelian group A of rank 3 such that

 $A_1 \oplus A_2 \cong A \cong B_1 \oplus B_2 \oplus B_3$

and A_i, B_j are indecomposable!

Theorem (Jónsson)

There is unique decomposition of torsion-free abelian groups in the quasi-isomorphism category.

Question

Is quasi-isomorphism simpler (\leq_B) than isomorphism?

The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism ${\tt 0000000} \bullet$

Isomorphism versus quasi-isomorphism

Answer

Isomorphism and quasi-isomorphism of p-local torsion-free abelian groups of rank n are incomparable, meaning that there is not a Borel reduction either way.

Definition

Let p be a prime. Then $A \leq \mathbb{Q}^n$ is p-local iff it is infinitely q-divisible for every $q \neq p$.

Conjecture

The same is true for isomorphism and quasi-isomorphism on the space of all torsion-free abelian groups of rank n.

Advertisement

Simon Thomas, Rutgers University A descriptive view of geometric group theory Wednesday 1pm (room 1A)