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Torsion-free abelian groups of finite rank
A concise and selective history

1937 Baer classified the torsion-free abelian groups of rank 1.

1998 Hjorth proved that the classification problem for torsion-free
abelian groups of rank 2 is strictly more complex than that for
the rank 1 groups.

2001 Thomas proved that the problem for rank n + 1 groups is
strictly more complex than the problem for rank n.

Question
What does it mean for one classification problem to be
strictly more complex than another?
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Standard Borel spaces

Definition
A standard Borel space is a Polish space X equipped just with its
σ-algebra of Borel sets.

Example

R,Qp,P(N), Borel subsets of these

Example

The space TFAn of torsion-free abelian groups of rank n.

This is the standard Borel space consisting of those A ∈ P(Qn)
which are subgroups of Qn of rank n.

Remark
Now, studying the classification problem for torsion-free abelian
groups of rank n amounts to studying the isomorphism equivalence
relation on TFAn.
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Borel reducibility of equivalence relations

Definition
Let E ,F be equivalence relations on standard Borel spaces X ,Y .
Then E is Borel reducible to F (written E ≤B F ) iff there exists a
Borel map f : X → Y satisfying:

a E b ⇐⇒ f (a) F f (b)

Meaning. . .

• Any set of invariants for F can be used as invariants for E .

• The E -classification problem on X is no harder than the
F -classification problem on Y .
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Example of a Borel reduction
Torsion-free abelian groups

Definition
Let ∼=n be the isomorphism equivalence relation on the space TFAn

of torsion-free abelian groups of rank n.

Fact
∼=n ≤B

∼=n+1

Proof.
Use the map A 7→ A⊕Q.
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Hjorth’s 1998 theorem and Thomas’s 2001 theorem

Theorem
The classification problem for torsion-free abelian groups of rank n
increases strictly in complexity with the rank n. In symbols:

∼=1 <B
∼=2 <B

∼=3 <B · · · <B
∼=n <B · · ·

(The first <B is Hjorth’s part.)
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Quasi-isomorphism

Definition
Subgroups A,B ≤ Qn are said to be quasi-isomorphic (written
A ∼n B) iff A and B have isomorphic subgroups of finite index.

Thomas found the quasi-isomorphism relation simpler to work with
and initially proved:

Theorem (Thomas, 2001)

∼1 <B ∼2 <B ∼3 <B · · · <B ∼n <B · · ·
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Isomorphism versus quasi-isomorphism
The question

Theorem (Corner)

There exists a torsion-free abelian group A of rank 3 such that

A1 ⊕ A2
∼= A ∼= B1 ⊕ B2 ⊕ B3

and Ai ,Bj are indecomposable!

Theorem (Jónsson)

There is unique decomposition of torsion-free abelian groups in the
quasi-isomorphism category.

Question
Is quasi-isomorphism simpler (≤B) than isomorphism?
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Isomorphism versus quasi-isomorphism
The answer

Answer
Isomorphism and quasi-isomorphism of p-local torsion-free abelian
groups of rank n are incomparable, meaning that there is not a
Borel reduction either way.

Definition
Let p be a prime. Then A ≤ Qn is p-local iff it is infinitely
q-divisible for every q 6= p.

Conjecture

The same is true for isomorphism and quasi-isomorphism on the
space of all torsion-free abelian groups of rank n.



Advertisement

Simon Thomas, Rutgers University
A descriptive view of geometric group theory

Wednesday 1pm (room 1A)


	The classification of torsion-free abelian groups up to isomorphism and quasi-isomorphism

