Introduction to Differential Topology

Uwe Kaiser
12/01/06

Department of Mathematics
Boise State University
1910 University Drive

Boise, ID 83725-1555, USA

email: kaiser@math.boisestate.edu



Abstract

This is a preliminary version of introductory lecture notes for Differential Topol-
ogy. The presentation follows the standard introductory books of Milnor and
Guilleman/Pollack. The difference to Milnor’s book is that we do not assume
prior knowledge of point set topology. All relevant notions in this direction
are introduced in Chapter 1. Also the transversality is discussed in a broader
and more general framework including basic vector bundle theory. We try to
give a deeper account of basic ideas of differential topology than usual in intro-
ductory texts. Also many more examples of manifolds like matrix groups and
Grassmannians are worked out in detail.



Chapter 1

Continuity, compactness

and connectedness.

In this chapter we discuss the relevant topological properties of subsets of Eu-

clidean spaces.

We use the usual symbols Z, N, Q, R C for the integer numbers, non-negative
integer numbers, rational numbers, real numbers and complex numbers.

For k a positive integer we define the Fuclidean spaces
R* = {(z1,...,z4)|zi € R,1 <i <k}

and RY := {0} is a single point.

For x = (z1,...,2x) and &’ = (2],...,2}) let

be the definition and equation relating Fuclidean metric and Euclidean norm.
In the following we call the subsets of Euclidean spaces just spaces.

A function f: X — Y is continuous at x € X if for each € > 0 there exists
& > 0 such that

(x)  d(w,2) <5 =d(f(2), f(2')) <e



For z € X and § > 0 let Dx(z,9) := {2’ € X|d(x,2") < ¢} be the ball at
of radius 6.

Then (x) above can be replaced by the condition

f(Dx(CL',é)) C Dy(f(.%‘)75)

A function f: X — Y is continuous if it is continuous at each point x € X.
The following is a list of properties of continuity. Some of these hold pointwise
(Explain!).

1. If f: X — Y is continuous, and X’ C X,Y’ C Y such that f(X') C Y’
then the restriction

X X' =Y’
is continuous.

2.If f: X - Y and g : Y — Z are continuous then go f : X — Z is

continuous.

3. The inclusion ¢ : X — Y of a subspace, i. e. ¢(z) = x for x € X is

continuous, in particular the identiy functions idx are continuous.

4. The function f : X — R¥ is continuous if and only if all the component
functions f; : X — R for ¢ = 1,..., k are continuous.
5. (i) linear and constant maps are continuous.
(ii) the multiplication R x R — R is continuous.
(iii) z — 1, R* =R\ 0 — R is continuous.
x
Proof of (4.)(Rest is exercise) We discuss continuity at z € X. =: Suppose f

is continuous at z, € > 0 is given. Then there exists § > 0 such that for all =’
with d(z,2") < 6 we have

k
e >d(f(x), f(a) = | D_(fulw) = f(a"))? = | filw) = fi()] = d(fi(=), fi(2"))
i=1
fori=1,...,k. Thus f; is continuous at z fori=1,...,k.

<=: Let € > 0 be given. Choose J; > 0 such that

d(z,2") < 6 = |fi(z) — fi(2")| <

P



Then for all 2’ with d(z,2') < § := min; §; we have

k k 9
A7 (@), f(a) = || (i) = fil@))? <\ [>T ==

=1

Thus f is continuous at . B

Definition 1.1. (a) For € X, a subset V' C X is called a neighborhood of x
if z € V and there exists § > 0 such that Dx(z,0) C V
(b) U C X is open (in X) if U is neighborhood of each of its points.

Examples. (a) X =Z C R. Then Dz(n,1) = {n}. In particular all the sets
{n} are open in Z.
(b) Dx(z,9) is open in X. (Exercise 1.1)

Theorem 1.2. Let X,Y be spaces and f : X — Y. Then the following holds:
(a) f is continuous at x <= for each neighborhood N of f(z), f~*(N) is a
neighborhood of x.(local characterization)

(b) f is continuous if and only if for all V C'Y open it follows that f=1(V) C X
is open.(global characterization)

Proof We write D for both Dx or Dy as long as this is clear from the context.
(a) =>: Let N be a neighborhood of f(z). By definition of neighborhood there
is € > 0 such that D(f(z),e) C N. By definition of continuity at = for this €
we find § > 0 such that f(D(z,d)) C D(f(z),e) C N. Thus

F7HN) o fTHf(D(2,6)) © D(,0)

and f~1(N) is neighborhood of z. <=: Let € > 0 be given and N := D(f(z),¢).
This is open by Exercise 1.1 and thus neighborhood of f(x). By assumption
f7Y(N) is a neighborhood of x. So there exists § > 0 such that D(x,§) C
f7H(D(f(x),e) which implies f(D(z,d)) C D(f(x),¢)).

(b) Note that by (a) the ¢ — ¢ condition is equivalent to the neighborhood
definition. =: Let V C Y be open. In order to show f~(V) open we show
that f~1(V) is neighborhood of each of its points. Let x € f~1(V) so f(x) € V.
Since V is a neighborhood, f~!(V) is a neighborhood of 2. <=: Let € X and
e > 0. Then f~}(D(f(x),e)) C X is an open subset of X so neighborhood of
each of its points. So there is § > 0 such that D(z,8) C f~1(D(f(z),e)), which
implies the ed-condition as above. B



Theorem 1.3. () and X are open. Intersections of finitely many open sets, and

arbitrary unions of open sets are open.
We leave the proof as an exercise.

Remark. Let X be any set and let O be a system of subsets with ), X € O
and satisfying (i) U,V € O = UNV € O, and (ii) U; € O for all i € J and any
set J = U;esU; € O. Then (X, O) is called a topological space. The notion of
continuity between topological spaces is easily defined by 1.2 (b). Many results
discussed in chapter 1 hold for arbitrary topological spaces but not all. Subsets

of Euclidean spaces are examples of so called metrizable topological spaces.

Definitions 1.4. (i) For Y C X define the interior of Y in X by

intx(Y):= |J U
Ucy
UCX open

Define the boundary of Y in X to be

er(Y) =X \ (’Lntx(Y) U intx(X \ Y))
(ii) F C X is closed:<—= X \ F is open.
(iii) Define the closure of Y in X by

dx(Y):= (] F

FDOY
FCXclosed

Remarks. (a) If the space X is clear from the context we omit the subscript
and also write Y for clx(Y).
(b) clx(Y) =intx(Y)U frx(Y) DY by Exercise 1.2.

In R* there is a particularly nice system of open sets: Consider for all a € Q¥
and ¢ € Q the ball
D(a,q) = {z € R*|d(a,) < q}.

This system is in 1 — 1 correspondence with Q% x Q = Q**! thus is countable.

Theorem 1.5. Each open set W C R* is a union of subsets (i) D(a,q), or (ii)
cl(D(a,q)), for suitable subsets of Q¥ thus in particular is countable union
of those sets.

Proof. Let W C R* be open. For a € W N Q¥ let

T(a) := {(a,q) € Q"*!|D(a,q) C W}



and let

T := U T(a) C QFFL.

aeWNQF

Claim: W = UrD(a,q) = Urcl(D(a,q))
Proof of Claim: Let x € W. Since W is open there is € > 0 such that D(x,¢) C
W. Let A € Q with 0 < XA < § and choose a € D(z, A\)NQF. Then cl(D(a, X)) C
W. In fact y € cl(D(a,))) = d(a,y) < A = d(y,r) < d(y,a) +d(a,z) <
A+ A <e =y € D(x,e) C W. Moreover € D(a, ) because d(z,a)
d(a,z) < A, and (a,A) € T because D(a,A) C cl(D(a,\)) cW. R

The following technical statement will be helpful in many situations:

Theorem 1.6. Let X C R* and (Uy)acs be a family of open sets in R* with
WU, D X. Then there exists a countable family (V;)ien with (1) UV; D X, and
(ii) for each i there exists o € J such that V; C U,.

Proof. Just let Uy = U(q,q)er, D(a, q) for suitable sets T, C RF and let T :=
UaesTa. Then after choosing a suitable bijection N «- T" we can identify the
collection of D(a, q) for (a,q) € T with a collection denoted V;. By construction
for each i and thus (a,q) € T we find « € J with D(a,q) C U,. B

Theorem 1.7. (pasting) Let X = X U Xo with X; C X closed for i = 1,2.
Let f : X — Y be a continuous function with f|X; continuous for i = 1,2.

Then f is continuous.

Proof. For C C Y closed note that
F7HO) = (fIX1)HC) U (f1X2)~H(O).

By continuity of f; we conclude (f|X;)~1(C) C X; is closed and by Exercise 1.4
(c¢) conclude (f|X;)~1(C) C X is closed for i = 1,2. A union of two closed sets

is closed, and the result follows. H

Definition 1.8. A continuous bijection f : X — Y is called a homeomorphism
if its inverse f~! : Y — X is also a continuous function. We write X ~ Y if

there exists a homeomorphism between X and Y.

Examples. (a) Let T := {(z1,22) € R?||z1| + |z2] = 1} and let S* :=
{(z1,22) € R%*|z} + 23 = 1} be two subsets of R?> = C. The space S! is

called the unit circle.



Claim: T ~ S!

Proof. Let f:S' — T and g: T — S* be defined by

I xI9
T1,T2) = 3
feve) = (TrmD el + o)
and
T €T
o(er, 22) = (—=22 2

NEEEANCEE:
Then it is easy to check that fog = idy and go f = idg1. Both functions
are continuous (extend to R?\ 0 and conclude from multi-variable calculus), so
g= f!and f is a homeomorphism. B
(b) Let

f:RD0,1) — S*

be defined by
£(0) = ™ = (cos(270),sin(270)).

The f is a continuous bijection. But [0,1) % S because deletion of a point from
[0,1) separates [0, 1) while deletion of any point from S! does not separate S*
(compare the following discussion of connecteness).

Products of spaces are introduced in the obvious way: X ¢ R¥ and Y c R*
then X x Y C R¥™. Note that the projections px : X x Y — X and py :
X XY — Y are continuous (check that preimages of open sets are open).

Examples. (a) S' x R € R? x R = R3 is the unit cylinder, S' x S' C
R? x R¥ = R* is the torus surface. This space is actually homeomorphic to a
doughnut surface in R3, see exercise 2.2.

(b) (0,1) x [0,1) &~ [0,1] x [0,1) (but (0,1) % [0, 1] because the first space is not
compact while the second space is). Thus the cancellation rule is not true for
~. We construct an explit homeomorphism f : (0,1) x [0,1) — [0,1] x [0,1) as

follows:
(%71_3-7:1) for 33?1 < 1—3;‘2
flz) = (:v1+(1—2m1)%,x2) for 1 —x9 <321 <2+ 29
(1—-%,321-2) for 3x1 > 24 29

This function is continuous by pasting and easily seen to be a homeomorphism

(compare also 1.13).

Definition 1.9. A space X C RF is compact if for each open covering (U )ae.s,
i. e. U, C R¥ is open and UU, D X, there exist finitely many aq,...,q, € J



such that
Uy, U...UU,, D X.

Then (Ua, )i=1,...,

r is called a subcovering.

Remark. Compactness is an intrinsic property, which does not depend on the
embedding in R*. In fact the system of open sets U, in the definition above
can be replaced by the system of sets U, N X of open sets in X (see exercise 1.4

(a)). (Check that this gives rise to an equivalent but intrinsic definition!)

Theorem 1.10. If Y C X is compact then Y is closed in X.

Proof. By Exercise 1.2 (b) it suffices to show Y = clx(Y),i.e.2 € X\ Y =
z & cdx(Y)(<= d(z,Y) > 0). Now d(z,y) > 0 for all y € Y is obvious. For
y € Y we know that Dy (y, 3d(z,y)) is open in Y thus the collection of these
balls, ranging over all y € Y, defines an open covering of Y. By compactness

we get
T

v = (J Dy (i, gz )

i=1
for some yi,...,y, €Y. Soy € Y => y € Dy(y;, 5d(z,y;)) for some i with
1<i<r=d(y,y) < %d(yi,x). So

1 1
d(z,y) > d(yi, z) — d(yi,y) > gd(yu r) > minigd(yi,x) =:p>0.

Thus d(x,Y") > p > 0 and the claim follows. W

Theorem 1.11. If X is compact and A C X is closed then A is compact.

Proof. Let A be closed and (Uy)aes with U, C X open and Uye U, D A.
Then X \ A is open in X and

X=(X\A)u | Va.
acJ
shows that (X \ A, (Uy)acs is an open covering of X. By compactness of X
there is a finite subcovering of X. If we discard X \ A from this covering we get

an open subcovering of A. B

Theorem 1.12. If X is compact and f : X — Y is continuous then f(X) is

compact.



Proof. Let (U,) be a covering of f(X) by open subsets of Y. Then f~1(Y) C X

is open because f is continuous and U, f~1(U,) = X. By compactness
X =fYUs)U...Uf  (Ua,)

for some aq, ..., a,. It follows that

U U, o £(X).

=1

Theorem 1.13. If X is compact and f : X — Y is a continuous bijection then

f is a homeomorphism.

Proof. We have to show that f ! is continuous, or (f~1)71(A) = f(A) is closed
for A C X closed. But A C X closed implies by 1.11 A compact, which imlpies
by 1.12 f(A) compact and thus by 1.10 f(A) is closed. B

Theorem 1.14. (Heine-Borel) A subset of R™ is compact if and only if it is
closed and bounded.

For the proof see any book on Analysis, e. g. Rudin’s textbook.

Definition 1.15. A pair (U, V) is called a separation of a space X if U and V
are nonempty and disjoint and X = U U V.

Remarks. (a) The sets U,V of a separation of X are also closed in X. More-
over, if ) # U # X is a subset of X and open and closed then (U, X \ U) is a
separation of X.

(b) U is both open and closed in X <= frxU = 0.(Proof: = frxU =
X\ (intxUUintx (X \U)). Since U, X \ U are open it follows that U = intxU
and X \ U = intx(X \ U) and thus frx(U) = 0. < frxU = () implies
X = intxU Uintx (X \ U. Because intxU C U and intx(X \U) C X\ U it
follws that intxU = U and intx (X \ U) = X \ U which implies that U and
X\ U are open. W)

Definition 1.16. A space is connected if it has no separation.
Example. If a space X is discrete and has at least two points then ({z}, X\x) is

a partition of X and X is not connected. Note that {0,1} C R is a disconnected
space.



Theorem 1.17. A space X is connected if and only if there exists a continuous
onto map f: X — {0,1}.

Proof. 1f (U,V) is a separation define f : X — {0,1} by f|U respectively
f|V the constant map onto 0 respectively 1. Conversely define a separation by
U=f0)and V= f"1(1). ®

Remark 1.18. If f : X — Y is continuous and X is connected then Y is
connected (pull back a partition of V).

Example. Intervals are connected (proof see Analysis).

Lemma 1.19. (a) Let (U, V) be a separation of X and W C X be connected.
Then W CU orW CV.
(b) Let (Co)acs be a family of connected spaces in some R with

mcoz:?é@

acJ

then

c::Uca

acJ

is connected.

Proof. (a) Otherwise (W NU, W NV) is a separation of W. (b) Suppose that
(U,V) is a separation of C. Since C, is connected we have for all j: either
Co CUor C, C V. Since UNV = 0 but NaiphalinsCa 7 0 it follows that either
C, C U for all j, or C, CV for all j holds. So without restriction C' C U thus
V = (), which contradicts to (U, V) being a separation. l

Example. In R" consider any union of lines through the origin. This is a

connected space.

Now for z € X let

.= |J ¢

C' connected
z€E

which is a connected space by 1.19 (b). C, is the maximal connected set con-

taining x or the component of X containing x.
Theorem 1.20. Let z,y € X. Then either C, NCy =0 or Cyy = C.

Thus the collection of C, forms a partition of the space X. So we can

10



decompose X into the corresponding equivalence classes

x=J¢

jeJ
where C; are the distinct components of X, in particular C; N C; = 0 if ¢ # j.

Proof. 1If C, N Cy # 0 then C, U Cy is connected by 1.19, z € C, U Cy =
C,UC, =Cy = C, C Cy. Similarly C, C C,. I.

Example. a discrete space (i. e.all subsets are open <= points are open sets)
has the points as components.

(b) @ C R has components points. (Let U C Q be any connected set with at
least two points, without restriction of the form ¢; < ¢2. Let r € R be a real

number with ¢; < r < g2. Then (—oco,r) N U, (r,00) NU) is a separation of U.

A map f : X — Y is locally constant if for each # € X there is some
neighborhood U of z sich that f|U is a constant map (onto f(x)). Note that

locally constant implies continuous.

Theorem 1.21. Let f : X — Y, X connected and Y discrete. If f is locally

constant then f is constant.

Proof. Let y = f(z) €Y. Let U := {z € X|f(z) =y} and V := {x € X|f(z) #
y. Then both U and V are open (because preimages of open sets). Thus V =
(because otherwise (U, V) is a separation of X. H

Definition 1.22. (a) A continuous map v : [0,1] — X with v(0) = = and
~v(1) = y is called a path in X from z to y.

(b) X is path connected if for all 2,y € X there is a path from z to y in X.

Note that paths can sometimes be added. If v is a path from x to y and s
is a path from y to z, both paths in X, then v defined by

() = 7 (2t)  for0<
= 22t —1) for L <

is a path from x to z (continuous by pasting).

Notation: v = 172

Examples 1.23. convex or star-shaped spaces are obviously path connected.
R\ 0 is not path connected (by the intermediate value theorem), but R™ \ 0 is
path connected for n > 1. Proof: Let x,y € R™\ 0 with « # y and

Lt) =z +t(ly —x)

11



be the sement from z to y. Then £(t) = 0 if and only if z(1 —t) = —ty <=y =
%x. Note that t # 0 or z = 0. Let A := % < 0. Case 1: If y # Az for all
A < 0 then we are done. Case 2: Otherwise segments in R™ define paths from
z to & := 7 and y to —&. Then use a rotation R(t) in a plane spanned by
# and some linearly independent vector z (note n > 1 is used precsely here) to
define a path from & to —Z. In fact if R(t) is rotation about % foro0<t<1
then the path (t) = R(t)Z is a path from & to —&. Continuity follows from the
continuity of ¢ — R(t) by identifying the set of rotation with a subset of the
2 x 2-matrices, which can be identified with R*. W

Note that the rotation argument from above shows that n — 1-spheres
§71 = {z € R"|[[a]| = 1}

are path connected for n > 1. But S° = {—1,1} C R is not path connected.
Remarks. (a) Products of path connected spaces are path connected (proof is
clear, take products of paths).

(b) If f : X — Y is continuous and X is path connected then f(X) is path
connected. (Proof. Let y1,y2 € f(X) and y; = f(z;) for i = 1,2 and let v be a
path in X from x7 to x3. Then f o~ is a path in f(X) from y; to ys.)

Proposition 1.24. A path connected space X is connected.

.lin

Proof. Let X be path connected but not connected. Then there is f : X —
{0,1} continuous and onto. Let z,y € X with f(z) = 0 and f(y) = 1 and
~:10,1] — X be a path from z to y. Then f o~ is a path in {0,1} from 0 to 1.
But each path in {0,1} is constant by 1.21. This is a contradiction. W

Example (Topologist’s sine curve). Let X = AU B with

A= {(z,y) e Rz =0,y € [-1,1]}

and .
B:= {(zay) € R2|y = Sin;v'r € (07 1]}

One can show that X is connected but not path connected (see e. g. James R.

Munkres, Topology)

Theorem 1.25. Let X be connected such that each x € X has a path connected
neighborhood. Then X is path connected.
Proof. Suppose X is not path connected. Then let

U :={z € X| there is a path from z to x inX}

12



and let V := X \ U. We claim that (U, V) is a separation. Now U UV = X
and U NV = () are imediate from the definitions. Let v € U. There is a
neighborhood W of w in X which is path connected. It follws that W C U
because each w € W can be joined with v by a path in W and then with x.
Thus U is open. Similarly, let v € V and W be a path connected neighborhood
of v. If there exists some u € W N U then there is a path from v to = (through
w). Thus WNU = @ which implies W C V. Thus V is also open. B

13



Chapter 2

Smooth manifolds and

maps.

Let U C R¥ and V C R” be open. A map f : U — V is smooth (or C) if all

partial derivatives: ‘
o f
8171'18171'2 N 8:%.

i; <k and all j > 1, exist and are continuous.

U — R,

fOI‘lS’L'l,...

3

Recall that smooth functions in particular are differentiable in the sense of
multi-variable calculus, and thus are continuous. The smoothness of f at z
can be defined whenever the domain of f is a neighborhood of z (because this
neighborhood contains an open disk around z, and that’s all we need to define

partial derivatives or differentiablity).

Recall:
af Y f(:vl,...,xi_l,:vi—l—h,:vi“,...,xk)—f(xl,...,:vk)
a‘ri(xlux?a"ka)_%l_}rno h )

We will use some results about differentiable functions without proving them

here. Recall that for f = (f1,..., f¢) as above, the Jacobi-matrix at some point
x is the matrix of first order partial derivatives (gf_ (x)) 1<i<e . This is an £ X k-
J 1<j<k

matrix and is the matrix representative of the derivative Df of f at x. Thus
Df(x) is a linear map R¥ — R, We will give another definition of Df(x) in
Step 1 below.

Definition 2.1 Let X C R¥ and Y C R be spaces and x € X. Then a map

14



f: X — Y is smooth at x if there exists a neighborhood U C R* of 2 and a
smooth map F : U — R’ such that F|(UN X) = f|(UN X). (F is called a
smooth local extension of f at x). f is smooth if f is smooth at z for all z € X.

f
X - Y
W f(
F

The smoothness of F' is defined using derivatives because U is a neighborhood
of z. Note than each smooth local extension of f at x on some neighborhood of

x restricts to a smooth local extension on some open neighborhood of x.

Remarks. (a) For X C R”, idx is smooth because it extends to idgs.

(b) If f is smooth at z then f is continuous at z. This follows because a
smooth local extension F' is continuous, and restrictions of continuous maps are
continuous.

(c) Suppose that f is smooth at  and ¢ is smooth at f(z). Then go f is smooth
at z. To see this choose a smooth local extension F : U — R¢ of f at = with U
open. Likewise choose a smooth local extension G : V- — R™ of g at f(z) with
f(z) € Vand V C Rf open. Since F is continuous and V is open, F~1(V) C U
is open in U and thus R* by Exercise 1.4 (c), with € F~1(V). Thus

RF 5 F1(v) 5 R
is smooth, and because
(GoF)FTY(V)NX = (go fIIF Y(V)NX
G o I defines a smooth local extension of go f at . B

Definition 2.2. A map f: X — Y isis a diffeomorphism if f is a differentiable
homeomorphism and f~! is smooth. Notation: X =Y.

15



Examples. (a) f : R — R with f(z) = 2% is a smooth homeomorphism but
f71(z) = Yz and f~! is not smooth.

(b) Let X = [-1,1] C R and let Y = {(z,y) € R?|(y = 0 and 0 < = <
1)or (x=1and 0 <y < 1}. It is an easy exercise to prove that X and Y are
homeomorphic. Suppose there is a diffeomorphism f = (f1, f2) : X = [-1,1] —
Y C R2% Then (i) f(z) = (1,0) for some = € (—1,1) because for a boundary
point x of [—1, 1] it follows X \ z is connected. But Y\ (1, 0) is not connected. We
can assume without restriction that f(0) = (0,1). (ii) f/(0) # 0, because: Let G
be smooth local extension of f~! at (1,0). Then (Go f)(0) = G'(1,0)f'(0) = 1
(since G o f = id near 0). (This is an application of the chain rule, see 2.6 (a),

which actually reads

(S0 am) (19) 1

(iii) Let p : Y — [1,2] be defined by p(z,y) = = for y =0 and 0 < z < 1 and
p(z,y) =y—+1forz =1and 0 <y < 1. Then p is a homeomorphism too. We
can assume without restriction that p o f is increasing. Then consider f'(0) =
limy,_.o w It follows that limp, 0 n<o M is a positive multiple of e;
while limy, 0 >0 M is a negative multiple of es, where e; is the standard
basis vector of R? for i = 1,2. Thus f is not differentiable. Note that there

exist smooth maps [—1,1] — Y (find one!) but no diffeomorphisms.

(1,1)

1 1 (0,0) (1,0)

(¢c) For a,b > 0 each ellipse Eqp = {(z1,22)[(£)? + (%2)? = 1} is diffeomorphic
to S' = Ey1. In fact f : S' — E,, defined by f(z1,22) = (az1,bxs) is a

diffeomorphism with inverse (z1,z2) — (%, 32).

16



The goal of differential topology could be the classification of arbitrary sub-
sets of Euclidean spaces up to diffeomorphism. But this is a hopeless problem
because subsets of Euclidean spaces can be very difficult. What is missing up
to this point is some inner structure of the sets X, Y, which allows to transport

the usual notions of calculus into this more general setting.

Definition 2.3. A space M C R” is called a smooth manifold (of dimension
m) if each point * € M has a neighborhood W C R* such that W N M is
diffeomorphic to some open subset of R™. (Notation: dim(M) =m.)

A smooth diffeomorphism ¢ : R™ D U — W N M is called a parametrization
of WN M C M. The inverse map ¢~ ! then is called a coordinate system
with chart W N M. Obviously parametrizations and coordinate systems are not
unique. Sometimes we also call the composition of a parametrization ¢ with

the inclusion of ¢(U) into M or R¥ a parametrization.

wnM

Rk

R™ M
Actually we should say more precisely smooth submanifold of R* above.

We will come back to the intrinsic nature of smooth manifolds later on. It will
follow from 2.8 (b) that m < k.

Examples. (a) Let m = 0. Then the open neighborhood W of z € M

with WNM =2 R shows that each point of M has neighborhood only containing
x. Thus 0-dimensional manifolds are just discrete subsets of Euclidean spaces.
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(b) An open subset U C R™ is a trivial example of a smooth manifold of
dimension m, with parametrization given by ¢dy;.

(¢) If M is a smooth manifold of dimension m and N C M is an open subset
of M then N is a smooth manifold of the same dimension. In fact let z € N
and let ¢ : U — M be a parametrization at x. Then ¢ = ¢|(p~1(N)) is a
parametrization for N at 2. Note that ¢ ~!(IV) is open in R™ because it is open
in U.

A 1-dimensional compact smooth manifold M C R? is called a link. If M is
connected it is called a knot. These names actually refer to M as submanifold.
Each such M is diffeomorphic to a disjoint union of circles S', see Milnor:

Appendix.

R3

Remarks 2.4 (a) Each manifold can be covered by finitely many charts. This
follows immediately from 1.6.

(b) (Smooth maps defined on smooth manifolds) Let M be a smooth manifold.
Then f : M — R’ is a smooth map at x € M in the sense of 2.1. <= there is a
parametrization ¢ : U — M such that f oy : R™ D U — R’ is smooth. Proof.
—: for any parametrization ¢ on U and smooth local extension F : W — R*
of f at o with W open, F oo = f o is smooth on o~ 1(W). <=: The
inverse ¢! defined on a chart of M extends locally around z to a smooth map
Y :RF OV — R™. Then F := (f o) o1 is a smooth local extension of f at
x and is defined on a suitable neighborhood of x. Thus f is smooth at x in the
sense of 2.1. A

In particular diffeomorphism of smooth manifolds can be defined using 2.1. or

18



the alternative description using parametrizations.
Examples 2.5. Recall that
S hi={(21,...,2n) ER"2I+ ...+ 22 =1} CR"

Claim: S"~! is a smooth manifold of dimension (n — 1).

Proof. Let y = (y1,...,yn) € S~ 1. Then there is some 1 <4 < n with y; # 0.
Case 1: y; > 0. Let W; := {z € R"|z; > 0}. This is open in R™ and y €
W; NS 1 ={x e S" x; > 0}. Define:

Vi W,nS*" = D" hi={z e R ot + .. 422 < 1}

by
(%) Vi(x1, oo @) = (1, o, i1, Tig 1,y -+ Ty)
Note that ¢;(W; N S"~1) c D""! is clear because z% + ... + 22 = 1 and
x; > 0. Also 1); is smooth because (x) can be used to extend to a smooth map
v, W; — R 1,
Now define
o, D"t W, nsnt

i(r1,. ., xn_1) = (®1,.. ., Tiz1,

Then p; = v; ! and ¢; is smooth. (Note that we do not have to extend because
D' c R"!, and in D"~ ! we stay away from the non-smooth point 0 of the
square root.)

Case 2: y; < 0 can be discussed similarly. In this case the parametrization is

(x1,...,2p—1) — (x1,...

|

Now let f: M — N be a smooth map between smooth manifolds. We want
to linearize f at a point € M (just like the Jacobi matrix linearizes a map
RF — RZ).

This linearization will be a linear map between vector spaces asscociated
tox € M and f(z) € N in a natural way.

For M C R* a smooth manifold of dimension m and x € M we want to define
the tangent space TM, C R¥. This will be a vector subspace of dimension m.
(Very often the tangent space is visualized as the affine space x + TM,.)
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Step 1: Let U C R* open and 2 € U. Then let TU, := R*. Now if f: U — R*
is smooth we define df, : R¥ — R’ by the following extension of the usual

directional derivative:

P (CE DB C)
t—0 t
In this case df, actually is just the usual derivative D f(x): In order to see this,
let 0 # h € R™. Then for all ¢ sufficiently small we have by definition of the
derivative D f:

(%) f(x+1th) = f(z) + Df(z)(th) + p(th)

p(th)

(T = 0 (note that ||h]| is a constant). Also

plth) _ [t th) = f(x) ooy,

with ﬁ lim;_,o

t t
For t — 0 it follows that D f(z)(h) = df.(h) (df.(0) = 0) is immediate from the
definition).

The derivative Df of a smooth map f : R¥ > U — R’ with U open is
defined in multi-variable calculus by (%) above. It is a map with domain U
and taking values in the space of linear maps from R* to R’. We let Df(x)
be the linearization of f at x, even though it is really the affine approximation
y — f(z) + Df(z)(y — x), which approximates f near z. For more background
see e. g. Michael Spivak: Calculus on Manifolds, Chapter 2. In particular proofs

of the rules below can be found there.

Rules 2.6.
(@) If f: U —V and g: V — W are smooth and f(r) = y then we have the
chain rule
d(go f)z = (dg) f(x) © dfx
Formally this means that d transforms the commutative “triangle” of smooth
maps
gof:U-Lv 4w

into the commutative “triangle” of linear maps:
df dgs(z
d(go f), : RF Y= ge @ gm

(b) d(idy) = idgx for U C R¥ open. If U C U’ is an inclusion of open subsets

let ¢« : U — U’ be the corresponding inclusion map «(xz) = x for x € U. Then

sz = Zd]Rk
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(A general theory generalizing the idea of (a), (b) is the notion of functor in
category theory.)
(c) Let L : R¥ — R’ be a linear map. Then dL, = L for all z € R¥. In fact
L th) — L L tL(h) — L
L) — i D) Z L) L) L) — L)

t—0 t t—0 t

= L(h)

for all h € R™.

(d) If f: R* > U — V C R is a diffeomorphism then df, : R¥ — R’ is an
isomorphism of vector spaces, in particular k = ¢.

(e) (Inverse function theorem): Let f : U — R’ be a smooth map and
r € U C R* with df, invertible. Then there is an open neighborhood W c U
of x such that f|[W : W — f(W) is a diffeomorphism (in particular f(W) is

open).
Step 2: Let M C R* be smooth and 2 € M. Let ¢ : U — M C R* be a

parametrization with p(u) = 2 € M and U C R™ open. Then dyp,, : R™ — R*
is defined.

Definition. TM, := dp,(R™) C R* is the tangent space to M at x.

xz+TM,

dpy

n
®
7

We need to show that the definition of T'M, does not depend on the choice
of (p,U).

Let x : V — M C R* be another parametrization with y(v) = z. Consider
(xTep)le ox(V))

This maps the open set Uy := ¢~ Lox(V) diffeomorphic onto some neighborhood
V1 of v. Now apply 2.6 (a) above to

x togp:lU; LR E Y
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to get the vector space isomorphism
() R™ 2y Rk 2o gm

Thus the images of dy, and dx, coincide. Bl

Claim: dim(TM,) =m
Proof. This is clear from ()*) above. We give an alternative proof. Note that
p=¢ 1 p(U) > U
is smooth at . Thus there is W C R* open with # € W and an extension
v: W —R™

with
V(W NeU)) = ¢~ W Ne(U))
Let Up := ¢ 1 (W N e(U)). Then by 2.6 (a) the derivative transforms

4

L:UOALU?W—HR’”

3
where ¢ is the inclusion map, into

. dpu ,

id : R™ 225 RE s g

It follows that the rank of dy,, is > m and by dimension reasons thus rank(dp, ) =
m. Thus
dim(im(dpy,)) = dim(TM,) =m

Let f: R¥ 5 M — N C R’ be a smooth map between smooth manifolds,
and f(z) =y.

Definition 2.7. For x € M the derivative
dfz . TMm — TNf(w)

is defined as follows: Extend f locally at = to the smooth map F : W — Rf and
let
dfz(h) := dF,(h)

(compare step 1 above for the definition of dF;).
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Claims:
(a) df, does not depend on the choice of F': W — R

Proof. Let
¢ U — MCRF
and

x:V —NCcCR*

be parametrizations with « € ¢'(U’) and f(x) € x(V). Then let

U:= () (V) nw)
and let
= |U

Note that f~*(x(V)) is an open neighborhood of z in M. Then ¢(U) C W and
fle(U)) € x(V).
Now consider
X lofop: U=V,
which is best visualized in the commutative square:

w . Re

e [x
-1
U X "ofop v
This transforms (by two applications of 2.6 (a)) into the commutative square

Rk dFy Ré

Tdtpu TdXv
R™ d(x tofop)u R™
It follows that
dFy (TMz) =dF; Od(Pu(Rm) = dxu Od(X_l © fOQa)u(Rm) C dXv(Rn) = TNf(ac)

Thus (b) holds. Since dF,|TM, = dx, o d(x~* o f o), o (dp,)~! and the
right hand side does not depend on F so does df,. This proves (a). Note
that on the other hand the left hand side does not depend on any choices of

parametrizations. W
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Here is an alternative description of 7'M, using smooth paths in M:
TM, = {7'(0) € R¥|y: (—§,8) — M is a smooth path with y(0) = z and § > 0}
Proof. Recall that

V(s +1t) —(s)
t

7'(s) = lim = dvs(1)

t—0

for s € (—0,8). Now given a smooth path v : (=4,0) — M with v(0) = x there

is a parametrization ¢ of M near x such that
T=pop loy:(~ge) =M
holds and is smooth, for some € < §. Thus by the chain rule
7 (0) = (p oy 09)(0) = dpu(d(¢ ™" 07)o(1)) € TM,
by the definition. Conversely let i € R™, and consider the path
Yn(t) == u+th € R™.

Let (p,U) be as above with ¢(u) = . Then 4(t) € U for t sufficiently small,
t € (—¢,¢), and 7,(0) = u. Counsider v := ¢ o,. Then

7'(0) = dyo(1) = dpu(74(0)) = dpu(h)

[ |
Note that for v =+'(0) and f : M — N a smooth map, we have

dfe(v) = df(7/(0)) = (f ©7)"(0).
This calculation actually involves the chain rule 2.8 (a) below.

The rules 2.6 now globalize to rules for the derivatives between smooth man-
ifolds.

Rules 2.8.
(a) (Chain Rule) Let f : M — N and g : N — P be smooth maps between

smooth manifolds. Then

d(go f)e = dgy(a) © dfs

(b) d(idpr)x = tdrar,. Moreover if « : M — N is an inclusion of manifolds,
M, N c R¥ smooth, then
dig : TM, — TN,
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is an inclusion of a subspace of a vector space.
(c) Let f: M — N be a diffeomorphism. Then

dfy : TMy — TNy(y)
is a vector space isomorphism.

Proof. (a): The idea is to use the chain rule for suitable extensions. For the
smooth map f:R*¥ D M — N C R’ we can find a neighborhood W of x in R”
and a smooth local extension F' : W — R’ of f. Similarly for g : R* > N —
P C R we can find V neighborhood of f(z) in R® and a smooth local extension
G :V — R? of g. Then

(GoP)F(V): F~ (V) = R

is a smooth local extension of go f at # € M, and F~*(V) C W is an open
subset of R¥ (compare exercise 1.4 (c)). It follows that

d(go fla=d(GoF)y =dG ) o dFy =dgy(z) o dfs

from the chain rule in 2.6 (a).
For the proof of (b) we can use that each path in M is also a path in N and the
alternative definition of tangent spaces.

(c): Just note that the chain rule implies the following:

(dfil)f(z) © dfm = idTMw

and
dfz o (df ") p(a) = idrn, ) -
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Chapter 3

Regular values and Sard’s

theorem.

Let f: M — N be a smooth map between smooth manifolds.

Definition 3.1. A point x € M is called a reqular point of f if df, : TM, —
TNy (s is onto. Let C = C(f) C M denote the set of points at which f is not
regular. Then f(C) C N is the set of critical values of f and N\ f(C) is the

set of regular values of f.

Examples. (a) If y € N with f~1(y) = 0 then y is a regular value of f. This
is abuse of notation because in this case y is not a value of f.
(b) Let p: S — R be the restriction of the projection P : R? — R, (21, x2) —

o, to Sl.

° n:
p
R2 5 1 * R
° -1

Then the kernel of dP, = P is given by R x {0} at each point x € R?. But
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TS! = R x {0} precisely at x = (0,—1) and z = (0,1). Thus dp, is onto for
x # (0,%1) and is the zero-map at (0, +1). Thus C(f) = {—1,1} and (0, £1) are
the two critical points of p. Note that the two critical values are the maximum
and minimum values of the function.

(c) If m < n then each point x € M is a critical point, and the set of critical

values is the image f(M).

Theorem 3.2. Let f : M — N be smooth with dim(M) =m and dim(N) = n.
Let x be a regqular point of f. Then there exists parametrizations ¢ : U — M at

x and x:V — N aty such that

(x tofop)(xr,. .., Tm) = (x1,...,2,)

Proof. For chosen parametrizations consider the commutative diagram, i. e.

g=x"tofog:

Rm

We can assume without restriction that f(o(U)) C x(V) (otherwise shrink
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U). Since dg, : R™ — R"™ is onto (which requires n < m, and p(u) = x) there

are invertible matrices A, B such that

A(dgu)B = (Inu Onx(mfn))a

where we identify the linear map dg, with a matrix representation and use block
matrix notation with I,, denoting the n x n identity matrix and 0y, (;n—n) is the
n x (m — n) matrix with only zero entries. (This follows from the fact that the
matriz dg, can be brought into the form (In,OnX(m,n)) by suitable row and
column operations.) Now replace ¢ by @ o B and x by x o A~!, where now we
identify the matrices A, B with the linear maps induced by them. Similarly g
is replaced by a new map but we will keep the old notation. Let G : U — R™
be defined by
G(z) = (g9(x), Tni1, -, Tm)

for x = (z1,...,2m). Then dG, = idgm = I, is invertible thus G is locally
invertible at uw by the inverse mapping theorem. Let G~! : U’ — U be a
local inverse (Note that we actually might have to shrink U in order to have G

invertible). Then we have the commutative diagram:

wo]

and

because
(1, 2m) = GY) = (9(Y), Tnt1,- -, Tm)

for some y € U, implies
(x "o fopoGT(G(Y)) =g(y) = (z1,...,20)
So replacing ¢ by ¢ o G~! will lead to the conclusion. B

3.2. gives a description of a smooth map f near a regular point and shows
that locally it can be given in charts by the standard projection. The general
local description of smooth maps is an interesting subject on its own. The

corresponding theory is called singularity theory.
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Corollary 3.3. Let f : M — N be smooth and y € N a regular value. Then
f'y)c M CR”

is a smooth manifold of dimension m—mn, where m = dim(M) and n = dim(N).

Proof. Every x € f~(y) is a regular point of f. Using the final parametrization
¢ from 3.2 with p(u) = z and u = (uq, . . ., Uy, ) it follows that | (({(u1, ... u,)}x
R™™") N U) is a parametrization of f~!(y) at = with inverse ¢~ 1|(f~*(y) N
p(U)) A

Let M' C M so that TM, C TM, is an inclusion of a subspace of a vector
space (see 2.8 (b)). Then the normal space to M’ in M at x is

v(M', M), :={veTM,| <v,TM, >= 0},

where < z,y >= Zle x;y; is the usual inner product of vectors. Note that the
normal space at z is a vector space of dimension dim(M) — dim(M').

Corollary 3.4. For f,y as in 3.3.we have:

T(f~())e = ker(dfs)

and
dfmly(f_l(y)7M)w : V(f_l(y)ﬂM)w — TN,

is an isomorphism of vector spaces for all x € f~1(y).
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x+v(M', M),

z+ TM,

Proof. Consider the commutative diagram:

f_l(y) inclusion M

fl(f’l(y)l lf

{y} inclusion N
it follows that df,(T(f~*(y))z) = 0 because T'({y},) = {0}. But
dim(T(f71(y))z) =m —n = dim(f~(y))

and
dim(ker(dfy) =m —n

from the usual dimension formula for linear maps. Since T'(f~*(y)). C ker(df.)
we conclude that the spaces are equal, and df, induces an isomorphism also

because of dimensions. W

Examples 3.5.
(a) Let f: R™ — R be defined by

flz)=a3+... +22.

Then
dfy = grad(f)(z) = (221, ...,2zy).
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Thus each point r # 0 is a regular value of f and for r > 0:
) ={z e R™| [[a]|* = r}

is a smooth manifold of dimension m — 1. Note that f~1(r) = () for » < 0, and
f71(0) = {0} is a manifold but of dimension different than the one given in 3.3.
(b) Let M (n) be the set of all n X n-matrices with real components, which can
be identified with R" and thus is a smooth manifold. Then

Sym(n) :={B € M(n)|B" = B} C M(n)

is the linear subspace of symmetric n X n-matrices. This is also a smooth

manifold of dimension w (Use that a symmetric matrix is determined by

the diagonal and all components above the diagonal.) Then let
O(n) :={A e M(n)|AA" =T} C M(n)

be the set of orthogonal matrices, where I is the identity matrix.

Claim: O(n) is a smooth manifold (in R™) of dimension @

Proof. Let
[+ M(n) — Sym(n)

be defined by
f(A) = AA".

This is in each component a polynomial map in the entries thus is a smooth
map. Note that f~*(I) = O(n). We will show that I is a regular value. Let
Ae f7YI), Be€ TM(n)a = M(n). Then
dfa(B) = lim f(A+1tB)— f(A) ~ im (A+tB)(A+tB)t — AA!
t—0 t t—0 t
:E%BN+AE+ﬁwU=BN+AH

Now T'(Sym(n))c = Sym(n) for each symmetric matrix C. Let C' € Sym(n)
and B := %CA. Then
1 ¢ Loty 1 Lo
dfa(B) = zCAA"+ A(ZA'CY) =-C+-C"=C
2 2 2 2
Thus df 4 is onto. It follows that

mmwmnzﬁ_”m;nznmgn.
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By Exercise 2.4, O(n) is compact. Because
det : O(n) — {-1,1}

is continuous (consider the explicit formula for calculating the determinant from

the entries of the matrix), O(n) is not connected. It can be shown that
SO(n) = det™1(1)

is connected. Note that obviously SO(n) is also a smooth manifold of the same
n(n—1)
—

dimension
Theorem 3.6. Let f : M — N be a smooth map with M compact and
dim(M) = dim(N). Lety € N be a reqular value of f. Then f~1(y) is a
finite set. Moreover, there is an open neighborhood V of y such that |f = (y)| =
|[f~1(y")| for all y’ € V, where | | denotes the number of elements of a set.

Proof. Note that f~!(y) is a closed subset of the compact space M and thus
is compact by 1.11. By 3.2., for each # € f~!(y) there is a neighborhood
U, such that f|U, : U, — f(Uy) is a diffeomorphism (because in suitable
parametrizations giving the identity map). In particular U, N f~1(y) = {z}.
Then (U, N f_l(y))xeffl(y) is an open covering of the compact space f~!(y).
A finite subcovering can only contain finitely many points. So let f~1(y) =
{z1,...,z,} and U,, = U, f(U;) =: V; as above. Then

Vi=Win...nV)\ f(M\ (U, U...UT,))

is an open set (In fact: Uy U...UU, is open by 1.3. Thus M \ (U; U...UU,)
is compact by 1.11 thus f(M \ (U1 U...UU,)) is compact by 1.12., thus closed
in N by 1.10. Its complement in N is open and thus the intersection of this
complement with the open set V4 N ... NV, (use 1.3. again) is open.) Now
let 4/ € V theny € V; for i = 1,...,r and there are uniquely determined
x; € U; for 1 < i < r with f(z}) = ¢’. This shows |f~(y')] > r. Suppose
|f~1(y")| > r. Then there isz € M \ (U U...UU,) with f(z) =y’ € V, which

is a contradiction. W

Remark. Let f,y be as above and let C' be the set of critical points of f. Then
N\ f(C) 3y~ |fH(y) e NU{0}

is a locally constant function. Thus this function is constant on the components
of N\ f(C). The set N\ f(C) is open, as we will see now.
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Theorem 3.7. Let f : M — N be a smooth map(with arbitrary dimensions
dim(M) and dim(N)).Then the map

M >z — rank(dfy) € NU {0}

has the following property: for oll x € M there exists a neighborhood U such
that

rank(dfs) > rank(df,)
for all a € U.(The rank cannot drop locally!)

Proof. It suffices to prove this for f : V — R’ and V C R™ open (use
parametrizations). Then df, is the linear map defined by the Jacobi-matrix.
Let rank(dfy) = d. Then there is a d x d submatrix of the Jacobi-matrix

(%(x)) 1<i<m Of rank d. Since f is smooth the coefficients of the corresponding
i <<

matrix (ggg (2)) 1<r<a depend continuously on z, meaning: if ||z —2'|| < ¢ then

for all 1 < r,s < d we have

’—8]%? x) — —afir <e

/
8Ijs 8CCjS (x )

Now consider the map

9fi,

Ljs

)\:Vaab—>det<( (a))1§r§d>€R
1<s<d

This is a continuous map because
det: M(d) =R = R

is continuous, and compositions of continuous functions are continuous. Since
R\ 0 is open we can define U := A"1(R\0). Then for all a € U the Jacobi-matrix
has a submatrix of rank d, thus has rank > d. B

The following is an immediate consequence of 3.7. using that for f : M — N
and dim(N) = n we have that C' is the complement of {z € M|rank(df,) = n}.
See also 3.20 for a more general statement.

Corollary 3.8. Let f : M — N be smooth and Let C C M be the set of critical
points. Then

(a) C is closed

(b) If M is compact then the set of critical values f(C) C N is compact and
thus closed in N by 1.13.
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Theorem 3.9.(Fundamental theorem of algebra) Let
P(z) = apz" + a1z" N+ 4 an_1z+an

be a complex polynomial with n > 1 and ag # 0. Then P has a root.

Proof. (i) Let S C R3 be the Riemann sphere with north pole N = (0,0, 1) and

south pole S = (0,0, —1). For coordinate systems we will use the stereographic

projections
hy:S*\N -R*=C
respectively
h_:S8*\S -R?*=C
defined by
z
h =
+ (Z7 ‘r?’) 1 _ Ig
respectively
z
h7 =
(27 Ig) 14+ 23

where we identify R? = C x R. Geometrically h, assigns to each point in S\ N
the intersection point of the line through this point and N with the plane 3 = 0
identified with C.

52

Similarly a calculation shows:

2z 1 2
l22+17 22 +1

hit(z) = ( )

and
2z 2

Wl (z)=(—— —= 1
- (2) <|Z|2+1, |Z|2+1 )

Note that hyh”'(z) = h_hi'(z) = (7%) (Check by computation that all the
formulas are correct!)
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(ii) Claim: Let P be the given polynomial and let f : S — S? be defined by
f(z) = hi'Phy(x) for ¥ # N and f(N) = N. Then f is smooth.

Proof. This is clear for x # N. Let x = N. Then S?\ S is a neighborhood of
N with coordinate system h_. Now f is smooth at N if and only if Q(z) :=
h_fh='(z) is smooth at 0 by 2.4 (b). But for z # 0,

Q(z) =(h-hT)P(hsh ™) (z) = -

1 z

T aGoz " +...4+a, ao+...+an2"

and Q(0) = h_ f(N) = 0. Note that the first expression is also defined at z =0
because ag # 0. This proves the claim because the first expression is smooth.
|

(iii) Now a critical point of f is N, or hi'(z) if
P'(2)= Zan,jjzjfl =0
because for x # N
dfe = (dh") . (2) © APy (2) © (dhy ).
With hy(x) = 2z, the Jacobi-matrix is

dP, = P'(z)= lim M,
h—0,h€C h

where we identify complex numbers with certain real 2 x 2-matrices using the

—-b
a+ib<—><a )
b a

This follows from the Cauchy-Riemann equations

COI‘YGSpOHdeHCQ

ou Ov ou ov

or oy’ By o
for analytic functions f = w + iv. It is easy to prove that products and sums
of analytic functions are analytic. Since f(z) = z is obviously analytic all
polynomial functions are analytic. Note that the determinant of the matrix
corresponding to a + ib is a® + b* = |a + ib|*>. Now f(C) C S? is compact and
consists of only finitely many points (the number of zeroes of P’ is finite). Since
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S2\ f(C) is connected. (Exercise: it is path connected, proceed similarly to the

proof in 1.23. to avoid a point.) Thus

SE\F(C) 2y = |7 ()]

is constant. But f~1(y) # 0 for some y € S?\ f(C) because otherwise all all
the values actually taken by the function would be critical values and there are
only finitely many. Since n > 1 this is not possible. Thus |f~!(y)| > 0 for all
regular values. But |f~(y)| > 0 for all critical values by definition. Thus f is
onto. Thus there exists  # N such that f(z) = S (we know f(N) = N), which
implies the existence of z € C such that P(z) =0. W

We now address the most important question:

How often or rare are regular values? ‘

The answer to this question is given by Sard’s theorem. In order to state

the result we need to introduce some new concepts.

Let a = (a1,...,a,) and b = (by,...,b,) be two vectors with a; < b; for
i=1,...,n. Then

n
W{(a,b) := H[ai,bi] CR”
i=1
is an n-dimensional rectangle. An n-dimensional rectangle is a cube with side
d=b;—a; for 1 <i<mn. Let

n

vol(W(a,b)) = H(bz —a;)

i=1
be the volume of W(a,b).

Definition 3.10. A C R"™ is called a set of measure zero if for each £ > 0 the
set A can be covered by countably many rectangles (or cubes), i. e. there are
(Wi)ien with

i vol(W;) < e

i=1
We introduce the following notation. For ¢ € R let

R .= {c} x R"* c R".

Note that in 3.10. the rectangles or cubes can easily be replaced by open
rectangles or cubes. For the proof of Sard’s theorem we will actually only need
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the case k = 1 from the following 3.11 (d). But the proof of 3.21 will require
the more general version for all positive integers k.

Lemma 3.11. (a) Countable unions of sets of measure zero, or subsets of sets
of measure zero, are sets of measure zero.

(b) R*! x {0} C R™ is a set of measure zero. An open subset of R™ is not a
set of measure zero.

(¢) If U C R™ is open and A C U is a set of measure zero, and if f: U — R
is smooth, then f(A) C R™ is a set of measure zero.

(d) (Measure zero set Fubini) Let A C R™ be closed such that ANRI ¥ is a set

of measure zero for all c € R¥. Then A is a set of measure zero.

Proof. (a) Let Ny, Na,...,N;, ... be a sequence of sets of measure 0. Let W

= 1,2,... be a covering of N; with 77, vol (W) < < 5. Then W/,i =

1,2,...;5=1,2,...) is a covering of Ny U Ny U... and
>3 wd) <Y 5 =e (1) =
=1 j=1

The assertion about subsets is obvious.

(b) We begin by proving the first claim for all compact subsets K C R"~!. Then
K is closed and bounded thus K C S for a sufﬁciently large rectangle in R" 1,
Then for each § > 0 the set S’ := S x [~ 55 g] is a rectangle in R™ containing
K CR™ Let 6 < l(s) Then vol(S’") = vol(S) x § < e for given €. To prove
the claim for R"~ " write R"™1 = U, C; with C; compact, and apply (a). If
U C R" is open then U contains an open rectangle of volume § > 0. Then the
volume of any covering of U by rectangles will be > § (Think about this!) Thus
U is not a set of measure zero.

(¢) We can assume that U = U2, C; with C; compact rectangles (this is proved
similarly to theorem 1.5.) Then it suffices to prove that all the sets f(C;NA) have
measure zero, given that A has measure zero. So we will show that f(ANK) has
measure zero for each compact rectangle K C U. Since the partial derivatives
of f on K are bounded there is a positive constant C' € R such that

£ (@) = f(y)ll < Cllx —yl|

forall x,y € K. It follws from this that if W is a cube of length a then f(WNK)
is contained in a cube W of length /nCa. Thus f(W N K) C W with

vol (W) < n™2C™vol(W).

(Recall that |z;| < § for i = 1,...,n implies Z
radius r is contalned in a cube of 1ength 2r.) N

< n(%)?), and a ball of

22 <n
w let A C U;W; with W, a
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sequence of cubes with
Z UOl Cnnn/2

Then f(ANK) C U f(KNW;) C U; W; for a sequence of cubes W; with

Zvol( i) < C'n ”/221)01 <e
i
This proves the claim. (Why does the argument not work for smooth maps
f:R™ DU — R"™ and m > n?)
(d) Without restriction we can assume that A is compact (cover R” by countably
many compact sets and intersect with A). It is clear that the proof can be
reduced to k = 1 by using induction. (To see this use that for R* 3 ¢ =
(¢/,¢") € RF1 x R we have ANR2F = (AR * )y AR%F ) Thus we
assume k = 1. We first prove the following:
Claim: Every covering of [a,b] C R by open finite intervals of length < b — a
has a subcovering by intervals with total length < 6|b — a|. Proof. Choose a
finite minimal subcovering, thus find intervals I,..., I, of the covering such
that [a,b] C U_,I; but [a,b] ¢ UJ_,, I for all 1 < ¢ < p (throw away
redundant intervals from a finite subcovering). We can enumerate the intervals
according to their left endpoint, i. e. if I; = (a;,b;) then ¢ < j if a; < a;. Note
that a; = a; does not occur because of minimality. Then a; < a;41 < by < biy1.
It follows that the total overlap is at most the length of [a,b]. Thus the total
length of the intervals is at most 3|a — b|. (If ;42 < b; then we could discard
(@it1,bit1).) H
Now assume A C [a,b] x R"1 and ANR?! is a set of measure zero for all
c € [a,b]. For every ¢ > 0 we can find a covering of ANR”~! by open rectangles
R! in R?"™! of total volume < e. Now for sufficiently small § > 0 the open sets
I? x R! cover
An | Ryt
zel?
where I? := (¢ — 6,c¢+ 6) for ¢ € R. (This follows from the compactness of A:
In fact if no § > 0 with the above property exists then you can construct the

sequence of monempty compact sets:
_ 1 1 :
Ap=(An | R} 1)\U[c— — et ] x R

z€lc—L c41]

Then A,, D A,41, and it follows (see e. g. Rudin, Principles of Mathematical
Analysis 2.36 Corollary, page 38) that N, A4, # (. But this is a contradiction
because the intersection of the A, is A\ U; R’ is empty by construction of the
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R!.) The sets I° form a covering of [a,b], which has a finite subcovering by
intervals I, j = 1,... N, of total length < 6|b — a| by the claim above. Let R;-
denote the set Rf if I; = I?. Then the I; x R} form a covering of A with total

volume < 6|b — ale (Just calculate:
Zvol(Ij X R;) = Zvol(Ij) Zvol(Rj—) < EZ’UOZ(Ij) < £6|b— al.)
(] J i J

Since we can make this arbitrarily small, A is a set of measure zero. This proves
(d). B

Definition 3.12. Let N C R’ be a smooth manifold of dimension n. Then
A C N is called a set of measure zero if for some covering of N by coordinate
systems ¢; : W; — R”™ with W; C N open, the sets ¢;(W; N A) are sets of

measure zero in R™ for all j.

Remark. It follows from 3.11 (¢) that in definition 3.12 any covering can be
used.

Theorem 3.13. Let A C N be a set of measure zero in a smooth manifold.
Then N \ A is dense, i. e. cly(N\A)=N\A=N.

Proof. Suppose the claim is not true. Then there is a point y € N with
y ¢ N\ A. So there is an open neighborhood V of y € Nin N\ (N\ A) C A
and a corresponding coordinate system (¢, W) at y, which maps W NV onto
an open subset of R™. But (W NV NA)=¢(WNV)is open in R™ and has
zero measure by 3.11 (a) and (c). This contradicts 3.11 (b). W

Theorem 3.14. (Sard’s theorem) Let f: M — N be smooth. Then the set
of critical values of f is a set of measure zero. In particular the regular values

are dense.

Remark. For dim(M) < dim(N) this proves that f(M) C N is a set of

measure zero.

Proof of Sard’s theorem. Let C C M be the set of critical points of f. Consider
a countable covering of M by parametrizations ¢; : U; — M, i € N. Then

(€)= fopi(C)
ieN
where C; C U; is the set of critical points of f o ;. Moreover z € M is a

critical point for f if and only if it is critical for x o f and any coordinate system
x for N at f(z) (this is because x is a diffecomorphism of open sets.) Thus
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Sard’s theorem follows, using the very definition of a set of measure 0, from the

following case:

Theorem 3.15. (Euclidean version of Sard’s theorem) Let U C R™ be
open and f : U — R™ be smooth. Then f(C) C R™ is a set of measure zero,
where C' is the set of critical points of f.

Proof. The proof will be done by induction on m. The case m = 0 is obvious.
We will do the induction step from m — 1 to m. Without restriction we can
assume that n > 1.

It follows from 3.8. and continuity of derivatives that we have the following

descending sequence of closed sets:
CoOCiDC2...0C; DCi41 D ...
where
C; := {z € Ulall partial derivatives of f of order < i vanish at x}

(For example Cy = {z € U|df, = 0}.) In order to prove the claim we will prove

three lemmas. The result then is immediate from 3.11 (a).
Lemma 1. f(C\ C4) is a set of measure zero.

Proof. For each x € C'\ C; we construct an open set V =V, with the property
that f(V, N (C\ C1)) has measure zero. Then because of 1.6., C'\ C is covered
by countably many sets V;, ¢ € N with V; C V, for some z € C'\ C. Since also

f(Vin (C\ C1)) has measure zero the claim follows. Let « € C'\ Cy. It follows

that there is a nonvanishing partial derivative g-—ﬁ(:c) # 0. Define

h:U — R™
by
h(z) = (f1(x),x2,. .., Tm).

Then
dhy = (grad(f1)(z)", ea, . .. em)"

is invertible. (Note that we consider grad(fi)(z) as a row vector here while
e; is the i-th canonical basis column vector of R™ for i = 1,...,m.) Thus h
maps an open neighborhood V of x diffeomorphically onto V' C R™. The map

g:=foh™t: V' — R"™ has the very same regular values as f|V, and
g(ta‘TQv" .,CCm) = (t7y25' .- ayn)
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for suitable ya,...y, € R. (Proof. Let (t,22,...,2m) € V' be arbitrary. We
know that (¢, z2,...,2m) = h(z) = (f1(z),z2,...,2m) for some

r = (z1,...,2m) € V. Therefore g(t,z2,...,2m) = f(h"1(h(x))) = f(z) =
(f1(x),y2,...,yn) and t = f1(z).) Now consider for each t:

g =gt xR HAV (¢t xRNV -t xR*!

We know that the image of the linear map described by the matrix

9g; 10 ... .0
G- C " ey )

is spanned by the columns of the matrix. Now (¢, 22, ..., Z.,) is critical for g* if

and only if it is critical for g and not in C;. By induction hypothesis we know
that the set of critical values of g* in ¢ x R"~! has measure zero. It follows from
Fubini’s result 3.11 (d) (see Remark below and also 3.20.) that the claim holds
for g. B

Remark. For the application of the measure zero set-Fubini, note that the set
of critical values of g is not necessarily closed. But we can argue as follows:
C C V is a closed set. Thus there is C C R™ closed such that C NV = C, e. g.

C = clgmC. Now V = Ujen K for compact sets K; C V by 1.6. Then

C:UéﬂKj:UCﬂKj.

JeN JEN
Now CNK ; is closed in K; thus compact. Thus C is countable union of compact

sets, and thus ¢(C) is a countable union of compact sets.
Lemma 2. For k > 1 the set f(Cy \ Ck+1) has measure zero.

Proof. Let © € Ci \ Cxy1. Then there is a (k + 1)-st partial derivative at z,
which is not zero. Let p(x) be a k-th partial derivative such that %(x) # 0.
Define h : U — R™ by

hiz) = (p(x),z2,...,Tm).

Then h maps an open neighborhood V of x diffeomorphically onto an open set
V' ¢ R™. We have
h(CrLNV) C {0} x R™ L,

It follows that all critical points of g := f o h~! of type C} are contained in the
hyperspace {0} x R™~1. Let

7: ({0} xR™HNnV - R"
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be the restriction of g. By induction hypothesis it follows that the set of critical
values of g is a set of measure zero. But all critical points of g (of type Cf)
are critical points of g. It follows that f((Ck \ Cry+1) NV) is a set of measure
zero. Now as before find a covering of Cy, \ Ck+1 by countably many sets, each

contained a set V' as above. B
Lemma 3. For k > ™ — 1 we have that f(Cy) is a set of measure zero.

Proof. Let S C U be a cube of length 6. We will show that for & > =t — 1
the set f(C) N S) has measure zero. Then we can cover U by countanbly many
cubes to conclude that f(C) has measure zero. For x € C, NS with x + h € S

we have

fl@+h)= f(z)+ R(z, h)

with
(*) |R(z, h)|| < allh|/**".

(Here we use the Taylor remainder term for smooth functions of several variables.
You can find this e. g. in Gerald B. Folland: Advanced Calculus, or any other
book discussing Multivariable Calculus.) Since S is compact we can assume

that a only depends on f and S (and not on z). In fact, we have

Dof(w+0h)
R(z,h) = Z Th
ol =k+1
by the mean value theorem for some 0 < ¢ < 1, where we use obvious multi-
index notation, and D¢ f attains a maximimum on S. Now subdivide S into r™
cubes of length g and let S be that one of the resulting cubes with = € S;NCj.

Then each point in Sy is of the form x + A with

4]
Ihl] < v,

because

It follows from (x) above that f(S7) is contained in a cube of length rk% with
center f(z), and b = 2a(y/md)**1. Thus f(Ck N S) is contained in a union of
at most r"™ cubes of total volume at most

b

o )n — bnrm—(k+l)n =0
r

"
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for r — oo if k41 > 2. Thus f(Cr N S) is a set of measure zero. (Note
that the natural number r determines the covering by cubes and can be chosen
arbitrarily large.) B

For most of the remaining results in this chapter we will consider the special
case of smooth maps
f:M—=R.

The study of non-degenerate maps and their relation with topology in this case
is called Morse theory.
In this case x € M is a critical point of f <= grad(f)(z) = 0.

Example. Let M be compact. Then each function f : M — R has at least
two critical points, namely where the function attains maximum respectively

minimum value.

For U C R™ open and f : U — R smooth let

1.01) = () € M)

be the Hesse-matriz of f at x.

Definition 3.15. A critical point = € U is called non-degenerate if H,(f) is an
invertible matrix. The function f is called a Morse function if all the critical

points of f are non-degenerate.
Observation. Non-degenerate critical points are isolated.
Proof. Given f let g := grad(f) : U — R™ be the map

of o

UamH(azl,...,azm)

The point z is critical for f means g(x) = 0. Now dg, = H,(f) non-degenerate
means that ¢ maps a neighborhood U of z diffeomorphically onto a neighbor-
hood of 0 € R™. Tt follows that there exists no 2’ # z in U with g(z’) = 0.
Thus there is no further critical point of f in U. .

Definition 3.16. Let M C R* be a smooth m-dimensional manifold and
f: M — R be a smooth map, x € M a critical point. Then z is non-degenerate
for f if for some (and because of 3.17. every) parametrization ¢ : U — M at z
we have: z is nondegenerate for f o .

In fact let x be a critical point, and without restriction let @1, : U — M
be two parametrizations with ¢1(0) = ¢2(0) = x (use translations and shrink).
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In order to prove that 0 is nondegenerate for f o <= 0 is nondegenerate for

f o g it suffices to prove:

Lemma 3.17. Let U C R™ be open and let 0 € U be a non-degenerate critical
point of f: U =R, ¢ : U — U a diffeomorphism with 1¥(0) = 0. Then 0 is also

non-degenerate critical point of f' = f o).

Proof. By the chain rule we get for x € U

It follows that

O*f! _ 0% f Oy, Oy, of 824,
2.0z, 0) = ; m(o)%j(o) (0) + zk: —(0) -(0).

Thus because %(O) = 0 it follows that

Ho(f") = (dipo)" Ho(f)dabo.

Therefore Hy(f) is invertible if and only if Ho(f’) is invertible
(because det(dig) # 0).

Theorem 3.18.(Morse lemma) Let f : M — R be smooth and a € M
be a non-degenerate critical point of f. Then there exists a parametrization
¢ : U — M with ¢(0) = a, and a natural number p := ind(f, a), the index of f
at a, with 0 < p < m := dim(M), such that for all x = (z1,...,2m) € U the
following holds:

fo<p(:c1,...,a:m):f(a)—x%—z%—...—z?)—l—:cfﬂ_l—I—...—I—chn

Remark. At an index m point the function has a local maximum. Thus going
away from a in any direction the values of the function are descending. At an
index 0 point the function has a local minimum and the values of the function
are decreasing in any direction close to the point. At an index p critical point
there are p descending directions and (m — p) ascending directions (generalized
monkey saddle).

Example. Let T C R3 be a doughnut surface like in Exercises 2.2. Let f be
the restriction of the projection p(z1,22,x3) = 21 to T. This function has two

critical points of index 1, a criticial point of index 2 and a critical point of index
0.
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The Morse lemma says that locally a smooth function at a nondegenerate

critical point is determined by a quadratic form.

Proof of Morse lemma. We first prove that the index at a nondegenerate critical
point is well-defined. Let f o 1 and f o 9o be as above. Then Ho(f o ;) is a
diagonal matrix with p; terms —2 and m — p; terms +2 on the diagonal. But
by 3.17 using suitable v we get

Ho(f o @o) = (dipo)" Ho(f o @2)(dtbo),

and in block matrix form

a%l(ﬂ:2) 0 . aj;p x +2 0 aj;p x
0 ]  \x % 0 x *  *

The general result follows from this by noting that we can permute the coordi-
nates.

To prove the extistence of ¢ as above we need the following:

Lemma 3.19. Let V' be a convex neighborhood of 0 € R™ and f:V — R be a
smooth map with f(0) = 0. Then

= Z z;gi(z)

for smooth functions g; : V — R with g;(0) = g—i(()).

Proof. By the fundamental theorem of calculus

f(z) :/0 f(tx))dt = / Z 171 (tz)x;dt = Z (/01 g:i (t:v)dt) T4,

i=1
_[toF
= /0 o2, (tz)dt

Note that for proving 3.18 we can assume that f : U — R with f(0) =0, 0 is

a non-degenerate critical point, and U C R™ convex. Then for z € U we know

that f(z) = 37", gj(z)z; and since 0 is critical we have g;(0) = 2 (0)=0. If
J

so we define

E;
we apply 3.19 to the maps g; we get g;(x) = Y.~ x;h;j(x) for smooth functions

hij :U — R. Thus

g z;x;h z; g xlxj ” —I—hﬂ g xzxj z;

1,j=1 zgl 1,7=1
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where
— 1
hij = 5 (hij + hyi).

It is an exercise to show that

_ 92
50 = 5359 0) = 5Ho(1)y

and thus is symmetric and nonsingular. The rest of the proof is an induction.
Suppose by induction hypothesis that for » > 0 we have constructed a neigh-
borhood U; of 0, and a parametrization ¢, : Uy — U with ¢1(0) = 0 such
that

fopi(u)=xu?£... +u |+ Z H;;(u)uu;j

r<i,j<m

with H(u) = (H;;(w))r<i,j<m & symmetric and nonsingular matrix for all u €
U,. The case r = 0 has been discussed above. It is known from linear algebra
(diagonalization of symmetric matrices) that there exists an orthogonal matrix
A such that

AH(0)A" = diag( M\, ... s M),

where diag means diagonal matrix, and all A\; # 0. (see e. g. P. M. Cohn,

Elements of linear algebra, theorem 8.8.) Let @ = (ur, ..., un) and
@' H(u)tu = (Au)'AH (u)A'(Ad) = (a') H' (v )i,
where

’ Irfl Orfl,mfrJrl
u = u
OmfrJrl,rfl A

and

H'(0) = AH(0)A* = diag(h,, . .., Am).

To simplify notation we write u for v’ and H for H'. We know that H,..(0) =
Ar # 0. Let g(u) := \/|Hyr(u)]. This is a smooth nonzero function in a small

46



neighborhood Us C U of 0 with g(u)? = FH,..(u). Now we calculate for u € Us:

fopi(u) ==+ u% +...£ u?ul + (urg(u))2

Furgl) Y g g ) + g ) 3 0y

i>r Jj>r

(+g(u))

~—

+ Z ’UJinHZ‘j (U)

1,1>T

2
=+ul+.. .+ |+ (uTg(u) + u g"ggg(u)>

=dui . tul E@+ Y wiug(Hij(u) — Hi(u)Hjp(u))

r—

=:f o gy ()

with o5 (@) = 1 (u) which holds by definition if and only if
U= @a(p1(w)) := (U1y oy Up1y Uy Up g1y e - oy Upp)-
Thus we define
p:Us—=U
by p(u) = 4. Then p is a diffeomorphism in a neighborhood Us of 0 and we use
p to define
Q2 i=popr’.

It follows that

fopr'(a)==+uf£.. . xaZ+ > di;Hi(0)

(r+1)<i,j<m
with
Hij (@) := Hyj(u) — Hip(u)Hjr (u)

for r+1 < 4,7 < m. Note that this is again symmetric and nonsingular in a

neighborhood of 0. This shows the inductive step and proves the result. B

Remark. For M compact and f : M — R a Morse function with critical points
Xy, 1 S ) S N let

N

(M, f) = 3 (=160 = 3 (1)Pa(p),

=1 D
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where n(p) is the number of critical points of index p. We will prove later on
that the number x(M, f) is actually independent of f. It is called the Fuler
characteristic of M and is one of the most important concepts of geometric
topology.

The following lemma actually has been used in the proof of Lemma 1 for the
proof of Sard’s theorem. (Note that the measure zero set Fubini easily extends
to countable unions of closed sets.)

Lemma 3.20. Let f : M — N be smooth. Then the set of critical values of f
s a countable union of closed sets.

Proof. Let M = Ujeng;(U;) for parametrizations ¢;, and thus
F(C) = Ujenf o 9;(Cj)

where C' is the set of critical points of f and C} is the set of critical points of
fow;. Thus it suffices to prove 3.20 for a function g : U — N with U C R an
open set. Now cover U by countably many cubes W;, ¢ € N. Then

9(C) = Uieng(C N W),

with each W; N C' is compact, and thus g(W; N C) is compact and thus closed.
|

Convention. If M is a smooth manifold then for almost all x € M means for

all z in the complement of a set of measure zero.

Theorem 3.21. Let M C R* and f : M — R be smooth. Fora = (ay,...,a;) €
R¥ et
fiz) = fla)+ <a,z>.

Then f* is a Morse function for almost all a € R¥.

Remark. For ||a|| sufficiently small the function f* approximates f pointwise,

uniformly on compact submanifolds.
Corollary 3.22. For each smooth manifold M there exists a Morse function.
Proof. Approximate the projection

McRr — 25 R

where p is the projection onto the last coordinate. B
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Proof of 3.21.
Case 1: Let M = U C R* be open. For g := grad(f) : U — RF it follows that

grad(f*)(z) = g(x) +a
and

Hy(f*) = dga = Ha(f).
Thus we have that z is a critical point of f¢ if and only if g(x) = —a. Then —a
is regular for g if and only if H,(f?) is invertible for all z with g(z) = —a. Thus

it follows from Sard’s theorem, applied to the function g, that f® is Morse for
almost all a € RF.

Case 2: Let (Uj)jen be an open covering of M. Then f¢ is not Morse if and
only if f%|U; is not Morse for some j € N. Moreover
{a € R¥|f* is not Morse} = U S;,
JEN
where
S; :={a € R¥| f*|U; is not Morse}

We will show that S; is a set of measure zero for all j € N.
(i) Suppose that U; C R™ x {0} C R*.

Then for almost all b € R™ we have  — f(x)+ < b,z > is Morse, but
brt1Tma1 + .. + brxy = 0 for arbitrary (bpi1,...05) € R¥"™ and 2 € U;.
Thus the set of all a € R¥ such that f¢|U; is not Morse has the form N x R¥=™
where N is a set of measure zero in R*. It follows from the zero measure Fubini
that N x RF~™ is a set of measure zero in R¥.

(ii) Next suppose that (p1,...,pm) is a coordinate system on U; where
pi(x1,...,25) = x; for 1 < i < k are the usual coordinate projections. Then
define for c € R*¥™ and z = (21, ...23) € U;:

f(o’c)(:zr) = f(z) + cm+1Tmt1 + - - - + CrTk
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If we apply Case I to the function g¢ (see picture below) it follows that for fixed

¢ for almost all b € R™ the function
FO(z) = FO) (@) + byay + ... 4 b
is a Morse function. Therefore
$; 0 (R™ x {c})

is a set of measure zero for all ¢ € R™. It follows that S; is a set of measure

Zero.
f
Uj F0.0)
(T1,- vy Ty Tt 1y -+ -5 The)
= \ ‘ (plu"'upm) Ac
R
V.
R™ P >
(1, ., Tm)

(iii) Because of (ii) it suffices to find a covering (U;) en such that for each j there
exists a sequence of projections (p;, , Piy, - - - » Dir, ) Mapping U; diffeomorphically
into R™. Then the restriction to M has the differential

(pi17 s 7pim)|TMza

thus is a local diffeomorphism at x. This gives for each € M a neighborhood
V., with properties as in (ii). Then cover M by countably many open V; such
that for each 4, V; C V,, for some z € M, and thus the condition of Case (ii) is
satisfied on V;. B

Similarly to the study of regular points is the study of points at which df,

has rank equal to dim(M). At such a point the function is called immersive.

For those functions one can prove a result analogous to 3.2.
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Theorem 3.23. Let f : M — N be a smooth map and x € M with rank(df,) =
dim(M) = m < dim(N) = n. Then there exist parametrizations ¢ : U — M
and v : V. — N such that

v o fop(xy,...,xm) = (21,...,2m,0,...,0) € R"
The proof of this is left as Exercise 4.2.
We conclude this chapter by proving a local converse of 3.3. For an inclusion
of smooth manifolds Z C M let
codimpi(Z) := dim(M) — dim(Z) = dim(v(Z, M),,)
forall x € Z.

Theorem 3.24. Let Z,M C R* be smooth manifolds, Z C M and z € Z.
Then there is a neighborhood W of z in M and a smooth map f : W — RY with

regular value 0 such that
fHo)y=wnz,

where £ := codimp (Z).

Proof. By 3.23 applied to the inclusion Z C M we find parametrizations ¢ :
U—Mandy:V — R” with U CR™ and V C R" open sets such that

o to(xr,...,10) = (T1,...,2,,0,...,0)

for all (x1,...,2,) € V. Note that £ =m — n. The set ¢~ o9)(V) C R" x {0}
is open in R™ x {0}. Therefore we can find open U; C U with o=t o (V) =
(R™ x {0}) N U;. Now 9(V) is open in Z. So there is W; C R* open with
WinZ=14(V). Let p1 := ¢|U; and Uy := wfl(Wl). Let ¢y := |Us. Then

02 (Z) = o3 (¥(V)) = U2 0 (R" x {0})
Let W := @3(Us) and f := po ;' where p : R™ — R’ is the projection
(T, s ) = (Tpg1y ey Tin)-
Now 0 is a regular value for f because for y € f~1(0)
dfy = dps o d(y ")y,
which is the composition of p with an isomorphism, and @2(x) = y. Now

powy'(y) =0+= ¢y (y) ER" x {0} =y e w(V)=WnZ,
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thus f~1(0) =W nZ.

{0} x R*
v (2) 7
U o M
U, _—
U,
0 '(2Z)
R™ x {0}
P
o '(2) v
]

Remark. This is true in particular for M = R* and Z c RF a manifold
of dimension m, and thus can be used as equivalent way to define smooth
manifolds. Note that in the proof we have shown that locally a smooth manifold
Z C R* looks like R™ C R”.

C RF
w
C
52
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‘We have
e(WnNnZ)y=R" x {0}

and without restriction (why?)

o(W) = R,
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Chapter 4

Manifolds with boundary

and orientations.

Let B™ := {x € R™| ||z|]| < 1} or S! x I C R? where I = [0,1]. These subsets
of Euclidean spaces are not smooth manifolds. Note that D™ C B™ is a smooth
manifold of dimension m. But for points in frgm=(D™) = S™~! the condition
of an m-dimensional manifold is not satisfied (even though S™~! is of course an
(m — 1)-dimensional manifold). Similarly S* x (0,1) is a smooth surface. The
points in frgixo,15" x (0,1) form the disjoint union of two circles S* x {0} and
St x {1}, and are 1-dimensional manifolds. The model space for a neighborhood
of a point in S™~! in B™ is not R™ but the half-space

H™ = {2z € R™|z,, > 0}.
Note that
Definition 4.1. A space M C R¥ is called m-dimensional manifold with bound-

ary if for each z € M there is an open neighborhood in M, which is diffeomor-
phic to an open subset of H™.

Remarks. (a) A diffeomorphism
w:H" DU —-p(U)Cc M

with U open in H™ (and thus ¢(U) open in M) is called a parametrization at
z for all z € o(U).
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(b) Recall from Exercise 1.4. that U € H™ is open if U = U'NH™ for some open
subset U’ in R™. Let x € U. If x € int(H™) then there exists e > 0 such that
D(z,e) CU' Nnint(H™) = U Nint(H™), which is open in R™. If z € fr(H™)
then for all € > 0 we have D(z,e) N (R™\ H™) # (. Thus in a manifold with
boundary we can distinguish between the points with a parametrization defined
on an open subset of R, and those not defined on an open subset of R™.

(¢) The (manifold) boundary of M is the set

OM := {x € M|3 ¢ parametrization at « with x € (U N fr(H™))} C M.

It follows that at each € M \ OM there is a parametrization ¢ : U — M with
o(u) =x and x € U Nint(H™). The interior of M is defined by

Int(M) == M\ dM,

and thus is a usual smooth manifold (without boundary) in the sense of chapter
2. Note that in general OM # frgr(M).

Examples. (a) Let M = {z € R?*1 < ||z|| < 2} is a smooth 2-dimensional
manifold with boundary and OM = S! while frg=(M) = St U285

(b) Let M = S'xI € R2xR = R3 with I = [0, 1]. Then &M = §'x{0}US' x {1}
and frgs(M) = M, intgs(M) = 0 but Int(M) = S x (0,1).

Question. Is it always true that OM C fr(M)?
Convention. By definition each manifold in the sense of 2.3 is also a manifold

with boundary. But in general one uses the word manifold with boundary only

if OM # 0.

Example. M =1 = [0,1] C R is a manifold with boundary but not I x I C R?.
In fact a diffeomorphism from a neighborhood U of (1,1) € I x I in I x I
to an open neighborhood of 0 in H? would restrict to a diffeomorphism from
UnN fr(I x I) to a neighborhood of 0 in R™~! x {0} € H™ (compare 4.4. to
check that this is true). But such a diffeomorphism does not exist by 2.2.

Theorem 4.2. Let N be a manifold with boundary and M a manifold without
boundary. Then M x N is a manifold with boundary and

O(M x N)=M x ON

and

dim(M x N) = dim(M) + dim(N).
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Proof. Let U C R™ be open and ¢ : U — M, and V C H"™ be open and
1 : V. — N be parametrizations. Then ¢ x ¢ : U x V. — M x N. Note that
UxV CR™x H" = H™™ is open (compare Exercise 2.1.) W

Example. For M a smooth manifold, d(M xI) = M x9I = M x{0}UM x {1}.

Remark 4.3.(Definition of df;, TM, etc. ) Let
g:H" > U — R*

be smooth. Then for all w € U we define TU, = R™. For the definition of
derivatives we distinguish two cases.

Case 1: Let u € int(H™). Then g is defined on an open neighborhood of u in
R™ thus dg, is defined as before.

Case 2: Let u € fr(H™). Then extend g to a smooth mapping

G:U — R
This is possible by definition of smoothness. Then define
dgy = dg, : R™ — R

Let g be a second extension defined on U”.
Claim: dg, = dg,
Proof of Claim. There exists a sequence (u;) in U Nint(H™), which converges
to u for i — oco. It follows that dg,, = dg,, for all i € N. But the mapping
U’ 3 x — dg, is a smooth mapping from U’ into the space of linear maps from
R* to R (which we identify with R¥*¢). This is because each component of the
Jacobi-matrix is smooth and thus continuous. The same applies to §. Thus we
have dg,, — dg, and dﬁui — dg, for i — co. The claim follows because limits
are unique. W
Thus dg,, is well-defined for all u € U.

Now if M C RF is a mooth manifold with boundary, z € M and ¢ : U — M

is a parametrization with ¢(u) = z then we define
TM, = dp,(R™) C R¥,

which is an m-dimensional vector space. As in chapter 2 it can be shown that
this does not depend on the choice of (p,U). Now if f : M — N is smooth
then df, : TM, — TNy, is defined as in chapter 2 by local extension of f at
x. The proof of the chain rule in this general setting is left as an exercise.
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Theorem 4.4. Let U C H™ and V C H™ be open sets, and x : U —V C H™
be a diffeomorphism. Then

xUNfr(H™) =V fr(H™).

Rm
Rm

U 14
w
PS Tm =0

Proof. 1t suffices to show x(U N fr(H™)) C VN fr(H™). (Then x~*(V N
fr(H™)) C UnN fr(H™) implies that V N fr(H™)) C x(U N fr(H™)).) Let
we UNfr(H™)). For the sake of contradiction suppose x(u) = v € int(H™)NV

(which is an open set in R™ because int(H™) is open in R™). Since dx,! is
1

is defined on an open neighborhood of v in R™. By the inverse
1

bijective, x~
function theorem y~* maps an open neighborhood W onto an open neighbor-
hood of u in R™. Since x (W) C U it follows u € int(H™), which is a

contradiction. W.

Corollary 4.5. Let M be an m-dimensional manifold with boundary. Then
OM is an (m — 1)-dimensional manifold without boundary (DOM = {.)

Proof. Let x € M and ¢ : H™ D U — M be a parametrization with ¢(u) = =
and u € fr(H™)NU.

Claim: (U N fr(H™)) = o(U) N OM (It suffices to prove this claim because
then o|U N fr(H™) is a parametrization for OM at x, note that o(U) N OM is
open in 9M.)

First note that (U N fr(H™) C M N@(U) is clear by definition of M.
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We have to prove that M N p(U) C (U N fr(H™)). Suppose for the sake of
contradiction that this is false. Then there is some ¢ : H™ D V — M with
(V) C o(U) (after shrinking let’s say), v € V. N fr(H™) and y = ¢(v) ¢
o(UN fr(H™)). Consider o=t o1 =: x : V — x(V) is a diffeomorphism and
x(V)cU. Wehavev € fr(H™)NV but x(v) € int(H™)NU. This contradicts
4.4. A

Obviously if f : M — N is smooth then df := f|OM : 9M — N is a smooth

map.

Corollary 4.6. Let f : M — N be a diffeomorphism between manifolds with
boundary. Then

of .= floM : OM — ON
1s also a diffeomorphism.

Proof. 1t suffices to show that f(OM) C ON. Suppose x € OM, f(x) ¢ ON.
Consider parametrizations ¢ : U — M and ¢ : V — N with U,V open in
H™, and p(u) = z and ¥(v) = f(x). We can assume o(U) C f~1y(V).
Then x ;=19 to foy:U — V is a diffeomorphism onto its image. Because
u € fr(H™)NU it follows that x(u) € x(U) N H™. This contradicts 4.4. W

Note that for f : M — N it follows immediately that d(0f), = dfy|T)(OM),.

Recall that for two linear subspaces V7, V5 of a vector space V' there is the

subspace

i+ Vo:={v=v1+vvn € V1,02 € Vo} CV,
which is the smallest subspace of V' containing both V7 and V5.

The following definition is probably the most important one in differential

topology. 7

f(M)

Definition 4.7. Let f : M — N be a smooth map between manifolds with
boundary (but empty boundaries possible) and let Z C N be a manifold. Then
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f is called transversal to Z at y if for all x € f~!(y) we have
dfo(TM,) + TZ, = TN,

If f is transversal to Z at all points y € Z then f is called transversal to Z with
notation f M Z. For two manfiolds My, My C N the notation is M7 M My if the
inclusion ¢ : My C N is transversal to M2 (or equivalently the inlcusion M; into
N is transversal to Mj).

Theorem 4.8. Let f : M — N be a smooth mapping, Z C int(N) a smooth
submanifold with 0Z = O (but OM or ON could be nonempty). Suppose that
fMZ, and if OM # 0 also (Of) h Z. Then f~Y(Z) C M is a smooth manifold
with

of~1(2)) = (0)1(2) = OM 1 f1(2)

and
codimpr f~H(Z) = codimn(Z) = codiman (0f)(Z).

Moreover

f~Y2Z) hoM.

Here is a picture of a typical example:

Examples. (a) The notion of transversality generalizes that of a regular value.
In fact if Z = {z} is a point in In¢(N) then f: M — N is transversal to Z if
and only if z is a regular value of f.

(b) If f : M — N is a submersion, i. e. df, is onto for all z € M then f is
transversal to any submanifold of N.

() If f(M)NZ =0 then fh Z.
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(d) If Z C N is an open subset of N then f M Z for all f: M — N. (e) If
f=7:R—R?isacurvein R? and Z = Rx {0} then f i Z if at all intersection
points the derivative vector of f has a component in the y-direction.

Proof. ,
Case 1. R
W
M f g ®o0
Z N
f~4(2)

Let OM = 0. Let z € f~%(Z) thus f(x) = z € Z. By 3.21. there is an
open neighborhood W of z in Int(N) and a smooth map g : W — R’ with
ZNW = g~1(0). W is also an open neighborhood in N because Int(N) C N
is open (and ON C N is closed (Exercise!l)). Consider

gof: [T (W) =R

with f=(W) C M open. We have d(g o f)» = dg. o df, by the chain rule.
Consider
TM, L= TN, 25 v(Z,N), 2= RY,
where p is the projection from TN, = TZ, ® v(Z,N), onto v(Z,N),. Then
p o df, is onto because
dfo(TMy)+TZ.=TN.,

and
v(Z,N),®&TZ,=TN,.

(The argument from linear algebra is as follows: Each v € v(Z,N), can be
written as v'+w with v € TZ, and w € df,(T'M,). Then p(w) = p(v')+p(w) =
p(v' + w) = p(v) = v.) Moreover, dg, is an isomorphism by 3.4. Thus 0 is a

regular value and
(go /)7H0)=f"Hg () =W NZ)=fHZ)n fTH(W).

Note that f~1(W) C M is open, and we see that f~1(Z) is a smooth manifold
by 3.3.
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Case 2. By Case 1 we know that f~(Z) N Int(M) is a manifold. Let x €
f~Y(Z)nOM. Choose g as above. Consider go f|f~*(W) and replace Z by 0:

T
UcCH™CR™ 2 ‘p gof

u RE

We have (g o f)~1(0) = f~1(Z)n f~1(W). Choose parametrization ¢ :
U— M atz, UC H™ open and p(U) C f~Y(W). Then f~1(Z) is a smooth
manifold (close to x) if =t f~1(Z) = F~(0) is a manifold with boundary in
H™. Thus consider F' := go fop : U — R’ Then u = p~(x) is a regular
point of F and OF. Extend F to a smooth map F defined on a neighborhood
U of u in R™. By definition dF, = dF, thus u is also regular point of F. Thus
F~1(0) =: S € R™ is a smooth manifold (This is actually subtle: Use that by
3.7. the rank of dF can locally only increase and restrict F to an open subset
with this property. Then all points in this neighborhood are regular and thus
0 is a regular value for the restriction of F to this subset.) It suffices to prove
that SN H™ is a smooth manifold with boundary and S M 0H™. Let 7 : S — R
be the restriction of the projection R™ 3 (z1,...,%m) — xm € R to S, also
denoted by 7. Then SN H™ = {s € S|n(s) >0} = F~1(0).

F

® .0
F

R Ré

Claim: 0 is a regular value of 7|S.
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Proof of Claim. Suppose, for the sake of contradiction, that s € S, m(s) =0
(<= se€ SNIH™), and dry = 0 = 7|T'Ss. It follows that

TS, CR™ ! x0=TH™ = ker(n).

Now T'S, = ker(dF,) by 3.4., and d(OF), = dF,|R™~! x 0. Because ker(dFy) =
TS, c R™ 1 x 0 it follows

ker(dFs) = ker(d(0F)s)
Since dF, : R™ — R and d(0F)s) : R™~! — R are both onto it follows that
dim(ker(dFs)) =m — 1

and
dim(ker(d(0F)s) =m — 2

This is a contradiction.

The rest of the proof of 4.8. follows from the following lemma. Note that
f~1(Z) th OM then follows from (SN H™) h OH™, which follows from
TS, =T(SNOH™)s ¢ R™~1 x {0} shown in the proof above. The claims about
codimension are easy consequences of 3.3. and 4.5.

Lemma 4.9. Let S be a manifold without boundary and w: S — R be a smooth

map with reqular value 0. Then
7 10,00) = {s € S|n(s) > 0}
is a manifold with boundary =*(0).

Proof. The set {s € S|m(s) > 0} is open in S and thus a manifold of dimension
dim(S). Let m(s) = 0. By 3.2. there are parametrizations ¢, x at s, with ¢
defined on V c R#™(5) open, such that xy~' o 7 o ¢ is the natural projection
and x[0,e) C [0,¢) for some ¢ > 0 (Use that x is a diffeomorphism thus has

non-zero derivative at 0.) Note that
o(V)N{s|n(s) > 0} = U N HE™E),

Thus after restricting the domain of ¢ suitably we have a parametrization of a
neighborhood of s. W.

Example. Apply 4.9. to

m:B™ ={z e R"|||z]| <1} = R,
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where 7 is the restriction of the projection R™ — R, (x1,..., %) > &p,. This
shows that B™~! € B™ is a smooth manifold with 9B™~! = (B™) N B™~!.

Theorem 4.10 (Sard’s theorem with boundary). Let f : M — N be a
smooth map with ON = (. Then almost all points in N are regular values of

both f and Of.

Recall that for almost all points means for all points except on a set of

measure zero.

oM

Proof. By the usual theorem of Sard we know that both the sets

{y € Ny is critical for f|Int(M)} and {y € Ny is critical for 9f} have measure
zero thus also their union. But if y € N is critical for f but not for f|Int(M)
then there exists some x € OM such that f(xz) = y and z is a critical point of

f. But then x is also a critical point for 0f and thus y is a critical value of Jf.
[

Theorem 4.11. Each smooth 1-dimensional connected manifold is diffeomor-
phic to one of [0,1],[0,1),(0,1) or St.

Let J be an interval, i. e. a subset of R diffeomorphic to one of [0,1],[0,1) or
(0,1). We will need the following;:

Definition. Let M be a manifold of dimension 1, M € R*. Then~:.J — M is
called a parametrization by arc length in M if v(J) C M is open, and «y : J —
~(J) is a diffeomorphism, and ||7/(s)|| = 1 for all s € J.

Lemma. Let v; : J1 — M and vo : Jo — M be parametrizations by arc
length. Then v1(J1) Ny2(J2) has at most two components. If the intersection
has only one component then 1 extends to a parametrization by arc length of
y1(J1) U~a(J2). If the intersection has two components then M = S*.
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Let U C J; be open with ~;(U) C 72(J2). Then v, ' o~ maps U diffeo-
morphically onto a subset of Js, which is open. Now for all s € U we have
(75 ' 091)'(s) = £1. (This follows from TM,, s C RF is a 1-dimensional sub-
space, and thus there are precisely two vectors of length 1. Also both d(v1)s
and d(72), are isomorphisms between 1-dimensional vector spaces, d(v5 "), (1) =
(d(72)¢)~! by chain rule, and d(y1)s(1) = 74 (s) respectively d(v2)¢(1) = v5(t),
see e. g. page 24.) Let ' C J; x J3 be defined by

= {(s, 0)Im(s) = 22()}-

This is of course the graph of v, "oy, defined on v; *(72(J2)). Note that for each
s € Ji there is at most one ¢ € Jy such that (s,¢) € I' (and vice versa). Note that
' is a union of segments of slope +1 (recall that a function R D J; — Jo C R
with derivative £1 at all points is an affine map with slope £1.

Jo

s N

Note that none of the segments of I can end in the interior of J; x Jy. This
follows from I" closed (consider a sequence in I', (s;,t;) — (s,t) € J1 X Ja,
and note by continuity of 71,72 it follows that ~;1(s) = ~2(t), which implies
(s,t) € T), and 75 ' 0y is a local diffeomorphism. In fact suppose 71 (t) = v2(s)
is such an endpoint. Now ;1 (J1) and ~2(J2) are both open thus 1 (J1) Ny2(J2)
is open. It follows that 5 1o ~; is defined on a neighborhood of s.

Jo

e
T /./

If two segments would end in fr(J; X J2) then we could e. g. find ¢; # to
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such that y2(t1) = 71(s) and y2(t2) = 71(s). But y2(t1) # 12(t2) because v2
is one-to-one. This is a contradiction. An analogous argument works if two
segments end on any of the other intervals in fr(Jy x J2). It follows that I' has
at most two components, which the same slope in the case of two components
(because any segment begins on one side and ends on another one). The three

typical situations are as follows:

or with I' connected:
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Case 1. Let ' be connected. Then 7{1071 extends to some affinemap L : R — R
and
v JLULTH(J2) = mi (1) Ura(Ja)

with
Whi=v and 7[L7'(J2) =y20L
Note that J; N L™ J2) # 0 <= J1 Ny 'y2(Je) £ 0 <= y1(J1) Nya(J2) # 0.

Therefore J; U L™1(J2) is an interval. Moreover if vo(J2) ¢ ~1(J1) then v
properly extends ;.

Case 2. The set I" has two components, which are segments of slope 1 (without
restriction). By precomposing v with some translation we can arrange that
v =c and § = d. Thus we have

a<b<c<d<a<p.

Now map [a,a] onto S! using the map ¢ — e and

2nt

a—a

0 .=

Thus if we replace t by t + (o — a) we map to the same point on S. Now define
h:S''— M by

h(e®) 1) fora<t<d=4d
[ =
Yo(t) fore=y<t<p

This is well-defined because 7;(a) = 72(a) and 75 ' o y1 = id on (c,d).
Moreover, because 2 extends beyond « and takes the very same values there
that 7 takes on [a,b] it follows that h is smooth. Then h(S!) is compact and
open in M (see 4.12. below), and thus because of M connected it follows that
h(S') = M. But h is bijective and smooth. Because h has a smooth local
inverse at all points, the inverse map is smooth too (see 4.12. below). B
Proof of 4.11. Let v : J — M be a mazimal parametrization by arc length.
The existence of a maximal parametrization follows from Zorns Lemma: Define
a partial order on the set of all parametrizations in M by arc length using
(1 :Jh = M) < (y2:Jo— M)if J; C Jo and 42]J1 = 1. Then every
chain has an upper bound, which is defined on the union of all domains of
parametrizations in the chain. Thus we can find a maximal parametrization
by arc length in M. Now suppose M # S'. Suppose that v(J) # M. Note
that v(J) C M is open. 7(J) cannot be both open and closed in M because
otherwise M is not connected. So there is a sequence of points in ~y(J) with
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a limit x € M \ 7(J) (see picture on next page). Parametrize a neighborhood
of = by arc length and apply 4.12 to define a larger parametrization. This is a
contradiction. H.

v(J)

T

Example. Recall from Chapter 2 that a compact smooth 1-dimensional man-
ifold L ¢ R? with 0L = 0 is called a link. If L is also connected it is called a
knot.

Remarks 4.12. (a) Let f : M — N be smooth (M = dN = (), injective and
df, an isomorphism for all z € M. Then f: M — f(M) is a diffeomorphism
and f(M) C N is open. Proof: Both statements are immediate from the inverse
function theorem, compare 2.6 (e).

(b) The components of a manifold are open. Proof: Let C' C M be a component,
and x € C. Then there is an open neighborhood U of = with U = D™ C R™,
thus U connected. By 1.19 (a) U C C. Thus z has an open neighborhood in C.
(c) It follows from (b) that a compact manifold has at most finitely many com-
ponents M, i. e. M = Us<;j<nyM; and M; N M; =0 for i # j.

(d) Tt follows from (b) that each connected manifold is path connected because
each z € M has a path connected neighborhood, see. 1.25.

(e) It follows from (a) that components of manifolds are manifolds. Thus 4.11.

gives a complete classification of 1-dimensional manifolds.

Remark 4.13. Note that 4.11 (e) implies that each link with & components
in R3 is as a smooth manifold diffeomorphic to a disjoint union of circles S*.
This disjoint union can be realized by placing all circles in R? x 0 ¢ R?, all with
radius % and centers in the natural numbers. Then the problem of knot theory
is to find out whether the above diffeomorphism of subsets of R? extends to a

global diffeomorphism of R3.

Theorem 4.14. Let M be a compact manifold with boundary OM # (). Then
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there exists no smooth map f: M — OM with f|OM = ida.

Proof. Let f be as above and y € OM a regular value of f (regular values
are dense by 4.10). By 4.8. we know that f~!(y) is a smooth 1-dimensional
manifold with 9f~*(y) = (0f) ' (y) = {y}. But f~1(y) C M is compact thus a
finite union of closed segments and circles. Thus (9f)~*(y) is an even number

of points. This is a contradiction. H
Example. The map idgm-1 does not extend to a smooth map B™ — S™~ 1,

Theorem 4.15. Each smooth map f : B™ — B™ has a fixed point, i. e. there
exists v € M™ such that f(x) = x.

Proof. Suppose the claim is not true. Then define g : B™ — S™~! by assigning
to @ € B™ the point on S™~! on the line through z and f(x), which is closer
to x than to f(z). The computation is as follows: g(z) = z + tu with ¢ > 0 and
u = Hfﬁ%& We determine ¢ such that ||g(z)|| = 1. Therefore
1=|lg@)|]? =< = +tu,z + tu >= ||2]|> + 2t < z,u > +1°.
This implies
2 +2t <zu>+(z]*-1)=0

and thus by the quadratic formula

t=—<zu>+y/<a,u>2+1—|[[z]]2 > 0.

Note that 1 — ||z||? > 0, and we have chosen ¢ correspondingly such that g(x)
is closer to = than to f(x). Thus g is smooth and g|S™ ! = idgm-1. This is a
contradiction to 4.14. W

Theorem 4.16 (Brower Fixed Point Theorem). Fach continuous map
G : B™ — B™ has a fixed point.

Proof. Let G be continuous without any fixed point. For each € > 0 there exists

a smooth function P; : R™ — R™ with
|Pi(z) = G(a)]| < e

for all x € B™. (P exists by the Weierstrass approximation theorem for func-

tions R™ — R, which can be easily deduced from the Stone-Weierstrass theorem,

. o : : — P
see e. g. Rudin, Principles of Mathematical Analysis, 7.32.) Let P(z) := 552
Then P(B™) C B™ because
1 1
P = ||P =—||P, -G G < 1)=1
1P@)] = = 1P = T lIPi@) — G0 + G| < (e +1)
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Because
|[P(z) — Pi(2)]| = [|P(z) — (1 +e)P(z)|| < el[P(z)]| < e
it follows that
|P(z) = G(z)|| < [|P(z) — Pi(z)|| + || Pi(z) — G(z)]| < 2.

Let G(z) # z for all x € B™. Then z — ||G(z) — || attains a minimum g > 0
on B™. Choose P as above with ||P(z) — G(z)|| < p. Then

|P(z)—zl| = ||P(2)-G(2)+G(z)—z|| = ||G(z)—z||-||P(z)-G(z)|| > p—p = 0.
Thus P is smooth and has no fixed point. This is a contradiction to 4.15. H.

Remark. Note that there exist smooth maps of open n-balls without any fixed
point. In fact let g : D™ — R"™ be a diffeomorphism and let ¢, : R* — R" be a
translation. Then g~ 'ot,0g: D™ — D™ has no fixed points. In fact, if x € D"
is a fixed point of g~ ! ot, 0 g then g~ (t.(g(z)) = = thus t,(g(z)) = g(x) is a
fixed point of ¢, in R™. But a translation has no fixed points.

We now introduce the important concept of orientation.

Let V be a real vector space of dimension m. Two ordered bases (v1,...,vm)
and (w1, ..., w.,) are called oriented in the same way if the matrix of the change
of bases has positive determinant. Thus if we write w; = 21 <j<m Aijv; for
1 < i < m we have det((Aij):,;) > 0. Oriented in the same way is an equivalence

relation on the set of ordered bases (Exercise).

Definition 4.17. An orientation of a vector space V is an equivalence class of

ordered bases.

Each ordered basis (v1, ..., v ) determines the orientation [vy,...,vy] = 0.
Let —o denote the opposite orientation, i. e. —o = [w1,..., W, ), where the
matrix of basis change (v1,...,0m) < (w1,...wy) has negative determinant.

Note that each vector space has precisely two orientations.

Example. For m > 1, R™ has the standard orientation [e1, ..., €,,]. where
e; =(0,...,0,1,0,...,0) for 1 <i <m is the i-th canonical basis vector with 1
in the i-th place. R = {0} is formally oriented by +1.

If V is a vector space with orientation o and (v1,...,v,,) is an ordered basis
then let sign(ws, ..., wy) = +1if [wy, ..., wy,] = o and sign(wy, ..., wy) = —1
if [wy, ..., wy] = —0.
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Let L : V — W be an isomorphism of vector spaces and let o = [v1,..., V)
be an orientation for V. Then L(o) = [L(v1),..., L(vy,)] is an orientation for
w.

Example. Let L : R? — R? be a linear map, and R? be oriented by o = [e1, e3].
Then L(o) = o respectively L(o) = —o iff det(L) > 0 respectively det(L) < 0.

Definition 4.18. An orientation of a manifold M of dimension m is a fam-
ily 0 = (0z)zem of orientations o, of TM, with the following compatibility
property: For m > 1 we require that each x € M has a neighborhood U with
coordinate system h : U — H™ such that for all y € U, dhy(o,) is the same

orientation of R™.

M is called orientable if there exists an orientation of M.

Theorem 4.19. If M is connected and orientable then there exist precisely two

orientations of M.

Proof. Let 0 = (05) be an orientation of M. Then —o := (—o,) is also an
orientation of M. This follows, because for coordinate systems h, we have
dhy(—0) = —dhy(o). Let ¢’ be an arbitrary further orientation. Define ¢ :
M —{l,-1}bye(x)=+1if o, =0}, and e(z) = -1 if 6/, = —0,. Since e is a
locally constant function by definition 4.18 and M connected it follows by 1.21

that ¢ is constant. This implies 0 = ¢’ or —oc =0¢’. R

Convention. An oriented manifold is a pair (M, o), where ¢ is an orientation
of M. We often write just M instead of (M, o) and let —M denote (M, —0o).

Example 4.20. Each 1-dimensional manifold is orientable:

Notice: If f: M — N is a diffeomorphism with M oriented then N is oriented
by oy, := df.(0.) for y = f(x) and o, the orientation of M at x. Thus orientabil-
ity is an inwvariant of diffeomorphism. We will say that two oriented manifolds
(M, o) and (N, o’) are (oriented) diffeomorphic if there exists a diffeomorphism
f: M — N with df(0) = o/, i. e. dfy(0z) = a}(m) for all x € M. Note that M
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is always diffeomorphic to —M by the identity map. But it is not always true

that M is oriented diffeomorphic to —M as the following examples show.

Example. Note that the oriented 1-manifold S* (use the counter clockwise
orientation of the circle) is oriented diffeomorphic to —S!. An oriented diffeo-
morphism can be defined by restricting the reflection C > z — z € C to S'.
Also the oriented closed interval [0,1] (use the orientation of R defined by the
order restricted to [0,1]) is diffeomorphic to —[0,1] using the diffeomorphism
of [0,1] defined by restricting R 3 ¢t — 1 —¢ € R. But the oriented smooth
1-manifold [0, 1) (oriented in the same way as [0,1]) is not oriented diffeomor-
phic to —[0, 1) because this would imply the existence of a smooth bijective map
f:10,1) — [0,1) with f'(¢t) < O for all ¢. Thus there is a lack of symmetry of
[0,1) with respect to orientations.

We now define a new important family of smooth manifolds.

For r,£ € N let V;, be the set of all r-tuples (vy,...,v,) of linearly indepen-

dent vectors v; € RY. We will consider
Vir C M(C,r) =R,

where M (¢,r) is the space of all real ¢ x r-matrices. This is an open subset
of RE". This is of course a smooth manifold of dimension ¢ - r. Vi is the

(non-compact) Stiefel manifold.
Lemma 4.21. The natural map
K Vi1 — S
which maps (vy,...,ve_1) to the unique vector v € S*~1 such that

det(v,v1,...,v0-1) >0

and v is perpendicular to the hyperspace span(vi,...,ve_1) C R’ spanned by
v1,...,Up_1 iS smooth.
(Notation: v L span(vi,...,ve—1) or v € span(vy,...,ve_1)>.)

Proof. Let S : (v1,...,v0—1) — (1,...,0e—1) be the Schmidt orthonormaliza-
tion map (see e. g. Curtis: Linear Algebra). It is easy to check that this is a
smooth map. Note that S preserves the orientation of span(vi,...,ve—1) de-
fined by (vi,...,v¢_1). Then v € R’ is the unique solution of the system of ¢
linear equations:

det(v,v1,...,0-1) =1
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<v,0;>=0for1<i</l—1,

which depends smoothly on (v1,...,v,—1). (The existence of a unique solution
is already clear from the original definition. But the system of equations above
shows the smooth dependence of v on (vy,...,v,—1)). B
v
span(vy, ..., vp—1)

In the following the notation M™ means a manifold of dimension m.

Theorem 4.22. Let f: M™ — R™" be an immersion (i. e. df, is injective
for all x € M). Suppose that M is orientable with orientation o. Then there is
a smooth map

n:M"™—-8Sm

with n(x) L df.(TM,) for all x € M.

Proof. df.(TM,) C R™"! is a hyperspace in R™"!. Thus there are precisely
two vectors of length 1 in df,(TM,)* and precisely one vector n(z) with

det(n(z), dfz(v1), - .., dfz(vm)) >0,

where (v1, ..., v, ) is an oriented basis of TM,,. The mapn : M — S™ is smooth.
In fact, let £ € M and let U be an open subset of H™ and ¢ : U — M be a
parametriation at x with [dpy(e1,...,em)] = oy for all u € U (respectively
—0,) for all u € U), i. e. doy(e1,...,en) (respectively doy(—e1,...,en)) is
an oriented basis of TM,. Then the map

p:USurdfyyodou(er,....em) € Vinrim

is smooth. Then no ¢ = Kk o p is smooth by 4.21. B
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1 = ny is the normal vectorfield corresponding to the immersion f. The
following picture shows the image of some immersion f : S' — R? (the figure
eight) and some normal vectors at = but drawn at f(z). The orientation of f is

also indicated.

Example 4.23 The Mébius band M? C R? is a nonorientable surface with
boundary. If it would be orientable it would have a smooth normal vector field.
But it is easy to see that no such normal vector field exists. In fact, imagine the
surface is colored red when you see the tip of the normal vectors, and is colored
green if you look at the tail of the vector. Then a smooth normal vector field on
a surface defines a coloring by red on one side and by green on the other side.
The same argument works for each manifold M™ C R™*!. Thus orientability
coincides with being two-sided for a manifold M™ c R™*. If OM = () and
M is connected then two-sided-ness implies that R™*1\ M™ has precisely two

components (Prove this!)

4.24. Product orientation. Let M, N be oriented manifolds with OM = 0
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or ON = (). Then an orientation for M x N is defined as follows. First identify
T(M X N) gy =TMz x TNy,

where the product of vector spaces is defined as usual. (Recall from page 24
that the tangent space to M x N at (x,y) is the space of derivatives at 0 of
paths in M x N through (z,y) at time 0, and note that paths in M x N through
(x,y) have the form v = (y1,72) with 71 a path in M through z and 72 a path
in N through y.) Then let a = (vy,...,v) and 8 = (w1, ..., w,) be ordered
bases of TM, and T'N,. Let (o x 0,0 x ) be the ordered basis:

((v1,0), ..., (Um,0), (0,w1),...(0,w,))

of TM, x TN,. Then define the orientation of M x N at (z,y) such that the
following rule holds:

sign(a x 0,0 x B) := sign(a)sign(p).
This is easilty seen to be well-defined.

Exercise. Show that (m,n) — (n,m) is an oriented diffeomorphism M x N =
N x N.

4.25. Boundary orientation. Each orientation of a manifold M induces an
orientation of M in the following way. Let x € M. Then T(OM), C T M, is
a hyperspace. Let HM, C T M, denote the uniquely determined half space of
T M, defined by the derivatives of paths 4/(0) for 7 : [0,0) — M with y(0) =
(Exercise!). There is a unique vector n(z) L T(OM), with —n(x) € HM, and
In(@)]] = 1.

T(0M), C TM,

HM,
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The vector —n(z) is called the interior normal vector, and the vector n(zx)
is called the exterior normal vector. Let (v1,...,v,) be an oriented basis
for TM, with v; = n(z) and for m > 2, (vo,...,vy) € T(OM),. Then let
T(OM), be oriented by [va,...,vn]. Thus in general for arbitrary bases let
sign(ve, ..., vy) = sign(n(z),ve, ..., vy). When m =1 and the length 1 vector
v in T M,, determines the orientation of M at x € OM then let o(T'(OM),) = +1
respectively —1 if v = n(x) respectively v = —n(x). Here o(V') denotes the for-

mal orientation of the 0-dimensional vector space V' as described following 4.17.

Example 4.26. (i) If M™ C N™ then M is oriented by the orientation of N.
(ii) Consider e. g. B? C R? and S! oriented as the boundary of B?:

€2 /

(ii) For a 1-dimensional manifold and P € M we call o(P) € {£1} the ori-

entation number at P. It is an important observation that for a compact 1-

> o(P)=0.

PcoM

dimensional manifold M,

(This obviously holds for each component of M)

Important Example 4.27. Let M be oriented. For t € I = [0,1] let M, :=
{t} x M c I x M. Then M, is oriented by the diffeomorphism z — (¢, x),
M — M, (*). Now consider (I x M) = M; U My (first without orientations).
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n(1,z) = (1,0)
eTl xTM,

My M,

Each ordered basis of T'(M1)(; ;) has the form 0 x 8 where 3 is an ordered
basis of T'M,. The boundary orientation in (1, z) is defined by

sign(0 x B) = sign(n(1,z),0 x B)
and the product orientation (1 =e; € TI; = R):
sign(1 x 0,0 x ) = sign(1)sign(8) = sign(B).

It follows that the boundary orientation of M is equal to the (*)-orientation.
For M, we have

sign(—1x 0,0 x B) = sign(—1)sign(8) = —sign(S).

Thus My, oriented by product and boundary orientation of I x M, has the
opposite orientation as that defined by (*). Thus we write for the oriented

boundary:
8([ X M) = M1 —Mo.
4.28. Preimage orientation. We first prove an algebraic lemma.

Lemma. Let V = Vi & Vs be a direct sum of vector spaces. Then each ori-
entation of two of the vector spaces induces an orientation of the third vector

space.

Proof. Let §3; be an oriented basis of V; for ¢ = 1,2, and let 8 = (81, 82). Define
an orientation of Vi @ V5 by

(x)  sign(B) = sign(B1)sign(B2)
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If V and some V; is oriented then (*) can be used to orient V; for i # j,
i,je{1,2}. |

Let f: M — N be a smooth map, Z C Int(N) a submanifold and f M Z,
Of  Z. We assume that ON = 0Z = () and that all manifolds are oriented.
Let S:= f~%(Z) C M and y = f(z) € Z. Because of transversality we have

dfe(TMy) +TZ, =TN,.
We know by definition that
v(S, M), @ TS, =TM,,
and df,(TS;) C TZ,. Thus we have
df.(v(S,M),) ®TZ,=TN,.

This sum is direct but not necessarily orthogonal. It is direct because codimy Z =
codimpsS = dim(v(S, M)), for all z € S, see 4.8.

Thus the orientations of T'N, and T'Z,, induce an orientation of df,(v(S, M),),
which is ismorphic under ((df.)|)~* to v(S, M),. Thus we can orient v(S, M),
using ((df;)|)~!. Then use

v(S, M)y & TSy = TM,

to orient T'S,. (Note that instead of v(S, M), an arbitrary oriented subspace
H with H® TS, = TM, can be used.)
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Chapter 5

Smooth homotopy and

vector bundles.

The motivation is the following: Given f: M — N, Z C N a closed submani-
fold, and dim(M) + dim(Z) = dim(N). Suppose that f m Z and all manifolds
are oriented and have no boundary. Then f~'(Z) C M is a 0O-dimensional

manifold, oriented by 4.28. Thus, if M is compact,

is defined.
We want to study how this sum is changing under deformations.

Definition 5.1. A smooth homotopy between smooth maps f,g : X — Y of
spaces is a smooth map
F:IxX->Y

such that F(0,2) = f(z) and F(1,2) = g(x). The notation is f ~ g.
Remark. ~ is an equivalence relation. (Exercise)

Examples. Smooth homotopy of smooth paths I — Y (relative to endpoints)
or smooth homotopy of smooth loops S' — Y is related with the notion of
fundamental group. If U C R™ is convex, or star shaped with respect to some

y € U. Then given any smooth map f : U — Y the homotopy

F:IxU—->Y
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defined by

(t,u) — flty+ (1 —1)y)
proves that f is homotopic to the constant map at y.

Theorem 5.2 (Transversality). Let F : M x S — N be a smooth map
between manifolds, Z C N, at most OM # (. If F h Z and OF th Z then for
almost all s € S also Fs h Z and OFs  Z, where Fy : M — N is defined by
Fs(z) = F(x,s) foralls € S and x € M.

Example. The following picture illustrates a case M = B2, S =R, Z = S!
and N = R%:

N MV xS ZCN
S TX i
7 F

Note that there are s € R for which F;*(Z) is not a smooth manifold. For
instance F,'(Z) could be a curve of the form

N
C
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with boundary in M, or it could be the disjoint union of a line and a point e.

g. for some s” just below or above s’ which also is not a 1-dimensional manifold.

Proof of 5.2. By 4.8. we know that W = F~}(Z) C M x S is a smooth manifold
with OW = (OM x S)NW. Let m : M x S — S be the projection.

Claim: If s € S is a regular value of w|W (respectively (w|W)) then Fs h Z
(respectively OFg h Z). (Then 5.2. follows from Sard’s theorem.)

Proof of Claim. Let Fy(x) =z € Z. Since F' th Z we know that

dF(3,)(T(M X S)(p,s) + TZ. = TN..
Thus for all @ € TN, there exists b € T (M x S)(LS) such that
dF (4,5 (b) —a € TZ..

Let b = (w,e) € TM, x TS,. (If e = 0 then d(Fs),(w) —a € TZ, and
F,  Z.) By assumption we know that TW(, ,) maps onto T'Ss under the
restriction of dm(, 4 : TM, x TS; — TS;. Moreover dr(, ) (w',e) = e for
w' € TM; and e € T'S,. Since F(W) C Z it follows that dF(, s (w',e) € TZ, for
(w',e) € TW(,5). Let v :=w —w'. It follows using (w,e) — (v, e) = (w—w’,0)
that

c:=d(Fy)z(v) —a=dF, ¢ ((w,e) — (w',€e)) —a
= (dF(3,5)(w,€) —a) — (dF 5 (w',e) € TZ..

Thus for each a € TN, there exist vectors v € T M, and ¢ € TZ, with
d(Fs)z(v) + c=a,

which implies Fs h Z. B

Corollary 5.3. Let f: M — R? be smooth, Z C R* be open, at most OM # ().
Then for almost all s € S the mappings fs with

are transversal to Z.

Proof. Consider F : M x S — R defined by F(z,s) = f(z)+s. Then dF, ;) =
(df s, idge), where we identift 7S, with R®. Thus F is a submersion. A similar
argument applies to OF. Thus for Z C R? arbitrarily we have F,0F  Z and
the result follows from 5.2. B
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Example. Let S = D the open ball in R. Let f : M — R’ be a smooth map.
Then f, as above is smoothly homotopic to f for each s € S. Just consider the
homotopy

(1) = fis ()

Thus each smooth map f : M — R’ is smoothly homotopic to a smooth map,
which is transversal to Z.

Z CR¢

In the rest of Chapter 5 we will globalize the above result to the more general
situation of Z C N.

Theorem 5.4. Let M™ C R* be a smooth manifold. Then
TM := {(x,v) € M x RF|v € TM,}

is a smooth manifold of dimension 2m in R¥ x RF = R2*. Moreover, if f : M —

N is a smooth map then so is
df : TM — TN

defined by

df (z,v) = (f (x), dfz(v))

Proof. Let ¢ : U — M be a parametrization with U € H™ open. Then we
define a parametrization

H?* S5R™ x U — M x RF c R?*
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by
(v,u) = (p(u), dpu(v))

It is easy to show that this is a parametrization. Let f : M — N C R’ be a
smooth map. Extend f smoothly by a map F : W — R¢ with W C R* open
and © € W. Then TW = W x RF ¢ R?* is open and

dF : TW — R*

defined by
dF(z,v) = (F(x),dFy(v))

is smooth. But (x,v) — dF,(v) is a smooth extension of df on some open subset
of R?*. W

Definition 5.5. An r-dimensional vector bundle (of finite type) over a space
X C R* is a space
£C X xR

such that the following holds:

(a) Let p1 : X x R® — X be the projection, and let 7 = m¢ be the restriction of
p1 to & Then for each x € X the space 77! (z) = {2} x &, with & C R’ is an
r-dimensional vector subspace of RY.

(b) 7 is locally trivial: For each x € X there exists a neighborhood U and a

homeomorphism 7 = 7y, a local trivialization, in the commutative diagram

7Y (U) —— U xR"
| al
U — U
such that
& —{yhx& o {yh xR - R’
is an isomorphism of vector spaces for all y € U. £ is called briefly just an

r-bundle over X and m=*(U) =: £|U. £ is called a smooth r-bundle if all T are

diffeomorphisms.
Examples. (i) The trivial bundle X x R over a space X
(ii) The open Moebius band, see Example 4.23., is a subset in R3, which is a line

bundle (i. e. 1-bundle) over the circle, which is not trivial.
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Remark 5.6. If ¢ is a smooth r-bundle over a smooth manifold M then we can
assume that the trivializations T = 1y define parametrizations in the following

way. If ¢ : U' — U is a parametrization then we have the commutative diagram:
7 HU) —— U xR «—— U’/ xR*
ol g l
U — U 2 U
where U’ € R™ open and thus U’ x R ¢ R™** open.

Theorem 5.7. TM C M x R¥ is a smooth m-bundle over M™ for each smooth
manifold M™ C R,

Proof. Let m: TM — M be the projection. Then
7 Y(z) = {z} x TM, =TM, C R¥

is a vector subspace of R* of dimension m. Let € M and U C M be domain
of a coordinate system thus ¢ : U’ — U for U’ C H™ open. Then

o Y (U) = {(z,v) €U xR¥jv € TM,} — U x R™

will be defined by
7(z,v); +(z,w)

where ¢(u) = z for u € U’, dp, (w) = v. Since
e (z) : {x} x TM, — {z} x R™
is defined by dg, ! condition (b) of 5.5. is also satisfied. B
Given a bundle ¢ over X we will write in general for Y C X

Y == n1(Y).

Theorem 5.7. For M™ C N* ¢ R" smooth manifolds
v(M,N) :={(z,v) e TNlve v(M,N),} CTN|M C M xR"

is a smooth (k — m)-bundle over M.

Recall that v(M,N), :={v € TN,|v L TM,}.
We will write v(M) for v(M,R¥ if M C R¥ is given.
We need the following

83



Lemma 5.8. For A:RF — R g linear map let At : R¢ — R* be defined by
< Av,w >=< v, Alw >

for allv € R* and w € RY. Thus if A= (aij)i; then A* = (aji)i ;. Then
A is surjective => A*(RY) = (ker(A))* and A? is injective.

Proof. Alw =0 =< Av,w >=< v, Alw >=0 for all v € R¥ = w L A(R¥)
= Rf = w =0, and thus A? is injective. Also Av =0 =

< Av,w >=< v, Alw >=0 for all w € R = AY(R?) L (ker(A) =

AYR?) C ker(A)*. It follows dim(ker(A)*) =¢. A

Proof of 5.7. We have M™ C N* x € M. Then there is an open set U c N¥
and a submersion
p: U — R,

¢ =k —m such that p='(0) = M NU =: U C M, see proof of 3.24. Then
v(UN)=v(M,N)Nn(TN|U) C v(M,N)

is an open subset. Let y € U. We know dp, : TN, — R is onto with kernel
TM,. Consider dp!, : R* — v(M, N),. Then define

¢ :U xR - v(U,N),

by
P(y,v) = (y, dpy(v)).

This defines a parametrization of v(U, N). We have
dim(v(M,N)) = dim(M) +{=m+ (k—m) = k.
Consider the projection 7 : v(M, N) — M with
7 Yz) = {z} x v(M,N), C RF,

which is a liner subspace. For x € M and U as bove we have commutative

diagram
v(U,N) —— U x R*
7r|l Pll
U pr— U
where



Remark. For each immersion f : M™ — N" there can be defined a normal
bundle v(f), which is a n — m-bundle over M.

Example. Let f : M™ — GL(¢) :== {A € M({)|A is invertible} be smooth.
(Recall that M (¢) = R is the smooth manifold of £ x f-matrices.) Let zo € M
such that f(xo) is the identity matrix I,. Define

¢=J e} xé
xeM
where
& = f(z)- (R" x {0}) C R".

It can be shown that £ € M x R is a smooth r-bundle.
Let Hp, denote the set of r-dimensional subspaces of RE.

Lemma 5.9. There is a bijective map
Hy, — Gopi={Ac M(0)|A" = A A% = Ajtr(A) =r} C M(0),
and Gy, is a smooth manifold of dimension r(£ —r).
Proof. Let H C R’ be a linear subspace of dimension r. Let Ay : R® — R’ be
the uniquely determined orthogonal projection onto H. Thus for an orthonormal
bases v1,...,v, of H and vg41,...,v, of HYL let
Ag(v) :=<wv,01 >v1+ ...+ <v,0. > v,

Note that R = H @ H+. Then A% = Ay because Ay (RY) = H and Ay|H =
id. With respect to the basis above the linear map Ay is represented by the

symmetric matrix in block form

1o Ir OT,Z—T
" Of—r,r Oé—r,@—r

with trace r. The matrix representative with respect to the canonical basis
(e1,...,er) is also symmetric because any two orthonormal bases are related by
orthogonal matrices and the change of matrix has the form A — BAB?.

Now conversely let A € G, be given. Then define
H := AR") c R".

Since A is symmetric it can be diagonalized in an orthonormal basis, and the

matrix with respect to this basis is

Ir OT,Z—T
Of—r,r Oé—r,@—r
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(Note that A% = A implies that the eigenvalues of A can only be ) and 1.) This
proves the bijection. Thus we can think of Gy, as the space of r-planes in RE.

Now consider the projection
p: Vo, — Gopr,
which is defined by mapping
(v1,...,0,) — span(vy,...,v)

It is not hard to see that ¢ o p is smooth where ¢ is the inclusion G, C RY.

We will show that Gy, is a smooth manifold of dimension (¢ — 7). (It can
be proved that with respect to this smooth structure, p is a submersion. Here
the idea is that two r-tuples span the same linear subspace iff there is a corre-
sponding automorphism of span(vi,...,v,). These automorphisms correspond
to the general linear group GL(r). Because the preimage of a regular value is
diffeomorphic to GL(r) then

dim(GL(r)) = r? = dim(Ve,.) — dim(Gy,) = £ - r — dim(Gy,)
corresponding to the dimension formula
dim(Ge,) =1 —1r* =r(l —71).)

Now let H = span(vy,...,v,) be an r-dimensional linear subspace and let
Vpi1,...,v¢ be a basis of H-. For nonnegative integers s,t let M(s,t) C R**

denote the smooth manifold of all real (r x s)-matrices. Consider the map:
§:M(r,l—r) — Gy,

defined by
()\”)TE;%;[ — span(v; + Z Aijv;|l <i<r)
j>r

We want to prove that this map is a diffeomorphism in a neighborhood of
Opo—r € M(r,¢ —r) and thus defines a parametrization of G, at H.

Without restriction we will prove this for H = span(ey,...,e,). Consider
a subspace H' close to span(ey,...,e.). We can write H' = span(wsi, ..., w,)
with w; = (a;,b;) and a; € R” and b; € R~ such that (by,...b,)! is close to
Op¢—r. Then there is a uniquely determined A € GL(r) such that

Aay,...,ar) = (e1,...,e)
We define A(by,...,b.)" =: ((Nij)ij) € M(r,f —r). It is easy to see that

0((Nij)i,;) = H' and thus 0 is onto. If H' is close to H then (A;;); ; is uniquely
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determined by H. In fact we can define (wy, ..., w,) spanning H' by orthogonal

projection of (eq,...,e,) onto H'.

Examples 5.10. (a) P™~! := G,, 1 is an m — 1-dimensional smooth manifold
denoted the projective space of lines in R™.
(b) Let f: X — Gy, be a continuous map. Then

&= J{a} x fl@) X xR
reX
is an r-bundle (this is not obvious!). Conversely for each bundle ¢ C X x R*
there exists the Gauss map
fﬁ X = Gé,r

mapping ¢ € X to &;.
(c) There is a canonical r-bundle 7, C Gy, x R? over Gy, defined by

wi= |J {H} xH.

HeGy

Definition 5.11. (a) A continuous map
F:&—n

between bundles £ over X and n over Y is called linear over f if there is a

commutative diagram of continuous maps

F
§ ——

ﬂgl Wnl
X _f, Y
such that F|&, : £ — ny() is a linear map. If F|¢, is a vector space isomorphism
for all x € X then F is called a bundle map over f.

noindent (b) If X =Y and f = id as in (a) then a linear map is a bundle

homomorphism, and a bundle map is a bundle isomorphism.

Examples 5.12. (a) Let f : M — N be smooth. Then df : TM — TN is a
linear map over f. If f is a diffeomorphism then df is a bundle map.
(b) If f: M — N is smooth and Z C N with f M Z. Then

df |

v(f~H(Z),M) —— v(Z,N)



is a bundle map.
(c) If £ — X is an arbitrary r-bundle with Gauss map f¢ then there is a bundle
map F¢ : & — 7, over fe, i. e. a commutative diagram

F,
5—5’%

l l

X . q,

(d) If there is an isomorphism & — n over X then £ and 7 are equivalent bundles.

Lemma 5.13. For each smooth bundle & over M the projection w: & — M 1is
a submersion.

Proof. Consider the local trivialization:
7N U) —— U xR"
7r|l Pll
U —— U
Since 7y is a diffeomorphism and p; is a submersion, 7 is a submersion.

Corollary. If Z C M is a smooth manifold then 7=1(Z) C ¢ is a smooth
manifold.

Theorem 5.14 (partition of unity). Let X C R* be a space and (U,) be
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a covering of X by open sets U, C X. Then there is a sequence of smooth

functions

0;,: X —-R

such that the following holds:

(i) 0<6;(x) <1 forallz e X, i €N,

(ii) For each x € X there exists a neighborhood V () such that 0;|V(z) =0 for
almost all i € N (local finiteness)

(ili) For alli € N there exists a and a closed set V; C U, such that 0;| X \V; = 0.
(iv) > ienbi(z) =1 for allz € X.

The family (0;):en is called a partition of unity subordinate to the covering (Uy).

For the proof see Michael Spivak, Calculus on Manifolds, 3.11.

Definition 5.15. (a) An open covering (U,,) of a space X is called locally finite
if for each x € X there exists a neighborhood V' such that {«|V N U, # 0} is
finite.

(b) A covering (V) refines a covering (U, ) if for each « there exists 3 such that
Vﬁ C U,.

Corollary 5.16. Each covering (U,) of a space X by open sets admits a count-
able locally finite refinement by open sets.

Proof. For a partition of unity (6;) subordinate to the partition (U,) consider
V; :=071(R\ {0}). Then (V;) refines (U,) and is locally finite by 5.14 (ii). B

Lemma 5.17. Let f: M — N be smooth, Z C M a submanifold and f : Z —
f(Z) a diffeomorphism such df, : TM, — TNy is an isomorphism for all
x € Z. Then there is an open neighborhood U of Z in M such that

fIU:U — f(U)

1s a diffeomorphism.

Proof. There is a neighborhood Uy of Z such that df, : TM, — TNy, is an
isomorphism for all € Up. (Define Uy := U,czU,, such that the claim holds
for each U, using 3.7.) For each y € f(Z) choose a neighborhood V, and a
diffeomorphism g, : Vi, — U, C Up inverse to f. Let (Vi) be a locally finite
refinement of (V) by open sets, and g; : V; — U; be the restriction of the

corresponding g, (with out restriction ¢ € N). Let
Wi :={y € Uilgi(y) = g;(y) for y e UsNU;} C U;
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and
W= Jw;
ieN
with g : W — M defined by g|W; = g;|W; smooth. For fixed ¢ consider for each
jeN
{y € UinUjlgi(y) = g;()}-
This set is both closed and open in U; N U;. In fact if we have yo with g;(yo) =
9;(y0) = zo € Uy the it follows from the invertibility of df,, that there exists
a neighborhood U’ of zy such that f| : U' — f(U’) is a diffeomorphism. In
particular the inverse function is unique thus g;| f(U’) = g;|f(U’). For yo € f(2)
fixed let W;;(yo) be that component {y € U;NU,|g:(y) = ¢,(y)}, which contains
yo € U; NU;j. Let
W(yo) := N Wij(yo) C W,
{(2,5)lyo€U;NU; }
open in W. So let U := Uy c¢z)W (yo). Then U C W, so g is defined on U and
is open neighborhood of f(Z). B

Let X C R* be a space and ¢ : X — Ry := {t € R|t > 0} be a smooth map.
Then let
X () :={y € R¥|3z € X with ||y — z|| < e(x)}

be the e-neighborhood of X in R,
Example. Let X — R, be the constant map to € > 0 then
X(e) = {y € R*|d(y, X) < ¢}
Lemma 5.18. Let X C R* be compact and U a neighborhood of X (i. e. U is
neighborhood of each point x € X ). Then there exists € > 0 such that X (¢) C U.
We leave this as an exercise.

Lemma 5.19. Let M C R* be a smooth manifold and U a neighborhood of M.
Then there exists a smooth function € : M — Ry such that M(e) C U. For M

compact we can assume that € is constant by 5.18.

Proof. Let (U,) be a covering of M by open sets with clj;U, compact. Then
by 5.18 there exist £, > 0 such that U,(e,) C U. Let 6; be a partition of unity
subordinate to (U,). Let U; := 6; (R \ {0}) C U, for some «, and all i € N.

Let
g = Z 9161

ieN
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Let y € M(e). Then there exists z € M such that ||y — z|| < e(z). Note that
{j € N|Jz € U;} is finite. Let i, € N be chosen such that &;, = max{e;|z € U;}.
It follows that e(x) < >,y 0i(w)e;, = &, and thus y € Uy, (e(iz)) CU. B

Theorem 5.20 (e-neighborhood theorem). Let M C R* with OM = ).

Then there exists a smooth function
e: M — Ry,
(constant for M compact) and a submersion
m:M(e)— M
with w|M = id.

Proof. Let h : v(M) — RF be defined by h(x,v) = x + v, where v(M) is the
normal bundle of the inclusion M C R*. Let (2,0) € M x 0 C v(M). Then

there is the commutative diagram:

TV(M)(LO) _— T(M X 0)(110) + {0} X V(M)m

dh(myU)J( El

Here Tv(M) 4,0y C R* x R*, and the right vertical arrow is an isomorphism
because dim(v(M)) = k. Moreover, h is regular on M x 0 : M x 0 — M.
So by 5.17. there is a neighborhood U of M x 0 in v(M), which is mapped
by h diffeomorphically onto a neighborhood of M in R*. By 5.19. each such
neighborhood contains a neighborhood of the form M (g). Then with h=1| :
M (e) — v(M) we can let 7 := m,(pr) o (h!]) be the submersion we want. Here

T, (ar) is the projection of the normal bundle. B

Corollary 5.21. Let f : M — N be smooth with ON = () and N C R*. Then
there exists a smooth map
F:MxD'—N

such that F(z,0) = f(z) and for each x € M the map s — F(x,s) is a submer-

sion D' — N. (In particular F and OF are submersions.)
Proof. Let ¢, N(e) and 7 be as in 5.20., and
F:MxD'—N
be defined by
Fz,s) = n(f(x) +e(f(2)s)).
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Then F(xz,0) = n(f(z)) = f(x). For fixed x the mapping

s— f(z) +e(f(x)s)

is a submersion D — R’ and 7 is a submersion. Thus also s — F(x,s) is a

submersion. W

Theorem 5.22. Let f: M — N be smooth, Z C N with 0Z = ON = (. Then
there exists a smooth map g : M — N smoothly homotopic to f with g N Z and
ogm Z.

Proof. For F as in 5.21. we have f, M Z and df, h Z for almost all s € D’ (by
5.2.). But each f; is homotopic to f using

IxM—N
defined by
(t,x) — F(x,ts).
[
Lemma 5.23. Let X C R* be a space with A, B C X closed and AN B = ().
Then there exists a continuous function X\ : X — [0,1] with \|/A = 0 and

A B = 1. In particular there are open neighborhoods U and V' of A and B with
unv =40.

Proof. Let

Then A is continuous. Notice that

x€ A<= d(z,A) =0
respectively

x € B<=d(z,B)=0.
Let U :=A"10,e) and V : #2171 (1 —¢,1]). A

Corollary 5.24. Let A C X be closed with open neighborhood U. Then there
exists a smooth function A : X — [0,1] with A\|(X \U) =1 and A(z) =1 for all
x in a neighborhood of A.

Proof. A and X \ U are disjoint and closed. Let V, W be disjoint open neigh-
borhoods of A, X \ U by 5.23. Then W D X\ U = X \ W C U is closed, and
VCX\W=VcCX\W CU. Now we can argue as follows: If we have
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found V O A with V C U then let (6;); be a partition of unity subordinate to
the covering {U, X \ V}. Then

A= Z 91'

is smooth. If z € V then 6;(z) # 0 = 60;|V # 0. Thus 6; does not appear in A
or 0;(z) = 0.Let z € X \ U. Then 6;(x) = 0 is not important. If 6;(z) # 0 =
0;'(R\0) C X \U = 6;[V = 0. Thus all §; actually appear in the above sum.
This implies:
Az) = 26‘1(:6) =1.

|
Definition 5.25. Let f: M — N be smooth, Z C N. Then f is transversal to
Z along C C M if

dfe(TMy) +TZ ) = TNy

forallz € f~1Z)NC.

Theorem 5.26 (Extension theorem). Let f: M — N be smooth, ON = {).
Let Z C N be a closed submanifold without boundary. Let C C M be a closed
subset. Let f h Z along C and Of m\ C along C N OM. Then there is a smooth
map g : M — N smoothly homotopic to [ such that g h Z and 0g N Z and
g = f on a neighborhood of C'.

Proof. The idea is to modify the function F' from 5.21.
Claim 1. fh Z in a neighborhood U of C.
Proof of Claim 1. Let x € C, o ¢ f~'(Z). Z is closed. It follows that
M\ f~%(Z) is a neighborhood of = where f h Z. For z € f~'(Z) let W be an
open neighborhood of f(x) and ¢ : W — R* be a smooth submersion such that
fhZata € f7Y(Z) <= ¢o fis regular at x. But ¢ o f is regular at z = it
is regular in a neighborhood = f M Z on a neighborhood U of C'. This proves
Claim 1. ®

Now let A : M — [0,1] with A\|(M \ U) =1 and A = 0 on a neighborhood of
C in U. Let 7 := \2. Because

dry = 2M()d A,

we have
T(z) =0 = dr, =0.

Let F: M x DY — N be as in 5.21. and define

G:MxD'— N
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by

G(z,s) = (F(z7(x), ).
Claim 2. G Z and 0G h Z.
Proof of Claim 2: Let (z,s) € G71(Z). First suppose that 7(x) # 0. The
mapping r — G(z,7), D* — N is a submersion because it is composition of the
diffeomorphism 7 +— 7(x)r with the submersion r — F'(z,r). This implies that
G is regular at (z,s). Thus G h Z in (x, s). Now suppose that 7(x) = 0. Let

m: M x D' — M x D*

be defined by

m(z,s) = (z,7(x)s).

Then
dm ¢ (v, w) = (v, T(x)w + d7(v)5)

for
(v,w) € TM, x TD! = TM, x R".
To prove this let 7, p be paths in M, D* with v(0) = z,+'(0) = v and p(0) = s,
P’ (0) =w. Then
d d

dm g5 (v, w) = — e (v(1), p(t)) = — ) (v(t), T(v (1) p(t))

(7/(0), 7(7(0)p"(0) + 7'(7(0))¥'(0)p(0))
=(v, 7(x)w + d1:(v)s)

Then G = F om and 7(x) = 0 = dr, implies
dG (3,5)(V, W) = dFp(5,5) © dM(y, ) (v, w) = dF (5 0)(v,0).
We know that F|M x 0 = f and thus
0G0 (0, 0) = df(0).

But 7(z) = 0=z € U = f th Z at x. Since im(dG ;) = im(df,) is follows
that G th Z at (z,s). Similarly G th Z. This proves Claim 2. B

Now by 5.2. there is some s such that we have for the mapping g(z) = G(z, s)
that g Z and dg M Z, g ~ f. If x € C then 7(z) = 0, and it follows that

9(x) = G(z,s) = F(z,0) = ().
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Corollary 5.27. Let f : M — N be smooth with Of h Z. Then there exists
g: M — N smoothly homotopic to [ such that Of = Og.

Proof. OM C M is closed. B
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Chapter 6

Intersection numbers,
vector fields and Euler

characteristic.

Throughout the following we will have condition (S): M, N, Z are smooth ori-
ented manifolds without boundary, M compact and Z C N closed, and dim(M )+
dim(Z) = dim(N).

A smooth compact manifold without boundary is also called a closed mani-
fold. Thus in condition (S) the manifolds M and Z are closed.

Suppose f : M — N is smooth with f M Z. Then f~*(Z) C M is a finite
set of oriented points. The orientation number o(x) for x € f~1(Z2) is +1

respectively —1 if the direct sum orientation on T'N(, given by
dfo(TMy) ® TZj(p) = TNy

agrees respectively does not agree with the orientation of T'Ny(,) given by the

orientation of V.

Definition 6.1. The intersection number of f and Z is

I(f,2)= Y o) €L
zef~1(2)
Without any given orientations there is still defined

L(f,Z)= > 1=|f"(z)| (mod 2) € Z,.

z€f~1(2)
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Theorem 6.2. Let M = OW for some oriented smooth manifold W, and
suppose that f : M — N extends to a smooth map G : W — N then I(f,Z) = 0.
Correspondingly I>(f,Z) = 0 if W is not necessarily orientable.

Proof. By 5.27. there exists an extension F with F = f and F M Z. Then
F~1(Z) is a smooth oriented 1-dimensional manifold with boundary f~*(Z). It
follows from 4.26 (i) and (OF)~Y(Z) = (—1)°4m~Z9(F~1(Z)) (see 4.28) that
I(f,Z)=0. 1

Remark. The sign discussion in the proof of 6.3. is based on the following
observations: Let A C F~1(Z) be an arc with 94 = a Ub. We need to argue
that o(a) — o(b) = 0. Now T A, is oriented by v(z) # 0 where

dF,(TAy) ® TZp(y) = TNp()

TA: @ v(@)R =TW,

Then v(xz) € HW,, at precisely one of a,b. This follows from the fact if v(x) on
one side of the arc is derivative of a path running into A, and v(x) # 0 all along
the arc, then v(x) will be derivative of a path running out of A on the other side
(to make the argument precise you could use a function on A, which is locally
constant thus constant because A is connected). Note that TAL for z = a and

x = b can be replaced by T'M, and the two conditions above become:
df» (TMI) &b TZf(I) = TNf(I)

TM, ®v(x)R=TW,.

Theorem 6.3. Homotopic maps M — N for M closed have the same intersec-

tion numbers.

Proof. Let fo and f; be smoothly homotopic, both th Z. Let FF : I x M — N
be a smooth homotopy. By 6.2. it follows that I(OF,Z) = 0. We know that
8([ X M) = Ml — MO and 8F|M0 = fo, 8F|M1 = fl thus

OFN2)=fi'(2) - £ '(2)
as oriented manifolds. It follows that

(OF, 2) = I(f1,2) — I(fo, Z) = 0.
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Now let ¢ : M — N be a smooth map not necessarily h Z. Let f be
smoothly homotopic to ¢ and M Z. Such a smooth function g exists by 5.22.
Then

(g, 2) :=1(},Z)
is well-defined. In fact it does not depend on the choice of f by 6.3.

If g : M C N is the inclusion of a submanifold then we write I(M, Z) :=
(g, 2).

Definition 6.4. Two smooth maps f: M — N and g: Z — N are transversal
if

dfu(TMy) + dg,(TZ,) = TN,
for all z € M and z € Z with f(z) =y = g(z) holds. Notation: f M g.

Now suppose (S) holds for M, N, Z. Then the above sum has to be a direct
sum and df,, dg. are isomorphisms. The local intersection number o(x,z) is
defined to be +1 respectively —1 if the direct sum orientation given by

df(TM,) ® dg,(TN,) = TN,

agrees respectively disagrees with the orientation given by V.

Definition 6.5. For M, N, Z, f, g as above let

I(f,g) = Z U(CC,Z)

(2,2)EM XN, f(x)=g(z)
be the intersection number of f and g.
Remark. If g : Z C N is inclusion of a submanifold then I(f,g) = I(f, Z).
In order to show that the sum in 6.5. is finite we prove the following:

Theorem 6.6.
fivg<=(f xg)hA,

where
fxg:MxZ—NxN

is defined by
(f x 9)(x, 2) = (f(2),9(2))

and
ACNXN
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1s the diagonal. Moreover,

I(f,9) = ()" DI(f x g, A).

The result follows with U = df,(TM,), W = dg.(TZ.) and V' = TNy

from the following result, which is proved by a tedious calculation.

Lemma 6.7. Let U,W C V be vector subspaces. Then
UpW =V UxW)aA=V XV,

where A C V x V is the diagonal. Moreover: Suppose U, W are oriented and
V' is oriented by the direct sum, A is oriented by the usual isomorphism V —
A,v — (v,v). Then the product orientation of V X V agrees with the direct sum
orientation of (U x W) ® A iff dim(W) is even.

Now for f: M — N and g : Z — N arbitrary smooth maps (not necessarily
M) we define:

I(f,9) = (=1)"™PI(f x g, A).
Theorem 6.8. If fo ~ f1 and go ~ g1 then I(fo,g0) = I(f1,91)-

Proof. f: x g¢ is a homotopy between fy X go and f; x g;. Thus the resulkt
follows from 6.3. W

Corollary 6.10. If dim(M) = dim(N) and N is connected then I(f,{y}) € Z
does not depend on y € N. Then

deg(f) :=1(f,{y})

18 called the Brower degree of f.

Proof. Let ig,i1 be inclusions of a point with image yo,y1. Then

I(f,{yo}) = I(f,i0) = I(f,y1) = I(f,{v1})-

It is an exercise to prove ig ~ i;. W

Examples 6.11. (i) The Brower degree of a map f: M — N with dim(M) =
dim(N) counts for regular values the preimages with signs. For example the
degree of f. : S* — S defined by f,.(z) = 2" is r for all r € Z. Generally it
follows from Exercises 4.4. that for each r € N there exists a map f,. : M — S™,

99



m = dim(M) such that deg(f) = r. Using a composition with a reflection
S™ — 8™ (which has degree —1) it follows from 6.12 (b) below that there exist
maps M — S™ of arbitrary integer degree.

(ii) The identity map id : M — M has degree +1 thus is not homotopic to a
constant map for dim(M) > 0, which has degree 0.

The following is immediate from the definitions.

Theorem 6.12. (a) Suppose f : M — N and g : Z — N with dim(M) +
dim(Z) = dim(N). Then
I(f,9) = (=1)mDEmD [(g, )

(b) Suppose f: M — N and g : N — W with dim(M) = dim(N) = dim(W).
Then

deg(f o g) = deg(f)deg(g)

Definition 6.13. Let 7 : £ — M be a smooth r-bundle. A section of £ is a

smooth map
s: M — ¢

such that

mTos =1idyy,
ie. s(z) €& forallx € M.
An example is the zero-section 3 : M — M x {0} C &.

Definition 6.14. An orientation of a bundle ¢ C X x R’ is a family of orienta-

tions (0, ).ex of orientations o, of £, such that there are local parametrizations
7N U) —— UxR™
U j— U

for which the isomorphisms 7|, : {, — R™ carry the o, to the standard
orientation of R™. A bundle £ admitting an orientation is called an oriantable
bundle.

Example 6.14. M is an orientable manifold of dimension m iff TM is an
orientable m-bundle over M.
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Lemma 6.15. Let £ be an orientable smooth r-bundle over the oriented mani-
fold M. Then the total space ¢ C M xR* is an orientable manifold of dimension

dim (M) + r (with coordinate systems given by suitable trivializations).

Proof. We have T¢, ) = TM, x & (consider paths to prove this, v € ;).
Let o = (v1,...,Um) be an oriented basis for TM, and § = (wy,...,w,) is an

oriented basis for &, according to the bundle orientation of £&. Then
sign(a x 0,0 x B) = sign(a)sign(F)
similarly to the product orientation of manifolds. l

Definition 6.16. Let £ be an oriented m-bundle over the oriented closed man-
ifold M with dim(M) = m. Then

x(€) :==1(3, M x 0) = 1(3,3)

is called the Euler characteristic of €.

Example. For M oriented and closed,
X(M):=x(TM)eZ

is the Fuler characteristic of the manifold M. If f : M — N is an oriented
diffeomorphism of oriented manifolds then x(M) = x(N). If f : M — N is
an immersion of an orientable with dim(N) = 2dim(M) and orientable normal
bundle then x(f) := x(v(f)) For an arbitrary manifold and immersion without
any orientatability assumptions x(M )2 and x(f)2 are defined in Z,.

Theorem 6.17. Let & — M be a smooth oriented m-bundle over a smooth

oriented closed manifold of dimension m. Let m be odd. Then x(§) = 0.

Proof. Suppose that m is odd. Then
1(3,3) = (=1)m0EmON (5. 5) = —1(3,3),

which implies 27(3,3) =0. &
In particular x(M) =) for each oriented closed manifold of odd dimension.
For example x(S!) = x(S?) = 0.

Theorem 6.18. Let £ — M be a smooth oriented m-bundle over a smooth
oriented closed manifold of dimension m. Suppose & has a smooth section s
with s(x) # 0 for all x € M (i. e. s is nonsingular). Then x(§) = 0. In the

nonorientable case x(§)2 = 0.
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Proof. Each two sections sg, 51 are smoothly homotopic. In fact, for 0 <t <1
define

si(x) == ts1(x) + (1 — t)sp(x) € &
for all x € M. For s without any zeroes obviously
I(s, M x0)=0,
thus also I(3, M x 0) =0 by 6.3. B
Definition 6.20. A vector field on M C R* is a smooth map
b: M —R"
such that v(z) € TM, for all x € M.

Theorem 6.21. The set of vector fields on M is in one-to-one correspondence
with the set of sections of TM . Moreover, s : M — T M is nonsingular iff v has
no zeroes, i. e. v(x) # 0 for all z € M.

Proof. For v : M — R¥ let 5, : M — T'M be defined by
sy (2) == (z,0(x)).
For 5 : M — T'M define v, : M — R* by
b; :=p20L08,

where ¢ is the inclusion TM C M x R* and p, is the projection M x RF — R*
onto the second factor. B
Let U C R™ be an open set and v : U — R™ be a smooth vector field with

isolated zero at x¢g € U. Then for all £ > 0 sufficiently small the map

o(w0 +1)

b:Sm s ——
|lo(zo + )|

is well-defined and smooth. Let
index(v,xz0) := deg(v) € Z.

be the index of the vector field v at x¢. Note that the index does not depend
on ¢ use a suitable homotopy top show this).

The following are the typical situations in R™ (pictures in R?):
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v=1id = index(v,0)=1

b=—id = index(v,0)=(-1)"

b=r[Sm! = index(v,0)=—1

Here
1 0 0
0 1 0
T =
0 0 -1

is the standard reflection in R™.

Definition 6.21. Let v be a vectorfield on M and let 1 be a vetor field on N.
We say v is related to wo under the smooth map f: M — N if

w(f(z)) = dfs(v(z))
holds for all x € M.

Lemma 6.22. Fach orientation preserving diffeomorphism f of R™ is smoothly
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isotopic to idrm, 1. e. there exists a smooth map
F:IxR™ —-R™
such that
F0,z) = f(z) and F(l,z)==x

for all x € R™, and for all t € I the map
R™ >t F(t,x)

s a diffeomorphism.

Proof. Without restriction assume that f(0) = 0. Note that

dfo(w) = lim @
Let
G:IxR™—R™
be defined by
G(t,x) := @ for 0<t<1
and

G(0,z) = dfp(z).

Then G defines an isotopy between f and the linear isomorphism dfy. Note that
G is smooth also at t = 0 because by 3.19

f@)=2191(x) + ... + Tmgm ()
for suitable smooth functions g;, and thus
F(t,x) = z191(tx) + ... + Tmgm (tx).

But the map x — dfy(z) is smoothly isotopic into idgm. To prove this use that
the set
GL4(m) :={A € GL(m)|det(A) > 0}

is path connected (Exercise). It can be shown that isotopy is an equivalence

relation (use suitable smoothing functions). This implies the claim. W

Lemma 6.23. Let U C R™ be an open set. Let f : U — U’ be a diffeomorphism.
Let
ol :=dfovo f1
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for a vector field v on U. Then for each isolated zero z of v we have an isolated
zero f(z) of v/ with

index(v”, f(2)) = index(v, 2).

Proof.

Now let v : M — R* be a vector field for M C RF a smooth oriented
manifold. Let ¢ : U — M be an oriented parametrization of M at zo € M with
©(0) = xg. Let 2 be an isolated zero of f in Int(M). Then define

index(v, o) := index(de ' o f o p,0).

Because of 6.23. this does not depend on the choice of parametrization. Then
for an arbitrary vectorfield v on some oriented manifold M with only finitely

many zeroes, which are all isolated, let

index(v) := Z index(v, zo)

xo zero of v

Definition. Let v : U — R™ be a vector field on some open set U C R™ with

zero z. Then v is called nondegenerate in z € U if dv, is an isomorphism.

Lemma 6.24. Suppose z is a nondegnerate zero of v. Then

index(v, z) = +1.

Proof. We can assume that z = 0. Since db, is an isomorphism it follows that
v is a diffeomorphism in a neighborhood Uy of 0. Using 6.22. it can be shown
that v|Uy can be isotoped into the identity map or a reflection map. B

Lemma 6.25. Let o : M — R* be a vector field, M C R*. Then dro, : TM, —
R* is a linear map with dw,(TM,) C TM,. Considered as a linear map of TM,
the following holds: If the determinant D # 0 then ind(w,z) = 1 respectively
—1 if D > 0 respectively D < 0.

Here is an important example of vector fields:

Let f: M — R be a smooth map. Then df, : TM, — R thus df, € TM}.
(Here for each real vector space V we let V* denote the dual vector space of
all linear maps from V to R.) Let v(f) : M — R* be the uniquely determined
vector field defined by

dfz(a) =< o(f)(z),a >e R
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for all a € T M,. The notation is
o(f) =: grad(f) : M — R*

(defined with respect to the usual inner product < , > of R* where M C RF).
Let z be a (nondegenerate) critical point of f. Then z is a (nondengenerate)

zero of grad(f). Moreover:

Lemma 6.28. For each nondegenerate critical point z of f of index p we have

index(grad(f),z) = (—1)P.

Proof. Let v : U — M be an oriented parametrization of M at z with ¢(0) = z,

U C R™ open and convex, and for v = (u1,...,uy,) in U we have:
fo<p(u):f(z)—u%—...—ui—kufﬂrl—l—...ufn.
Then
grad(f o p)(u) = 2(=u1, ..., —Up, Upi1,- -, Um)".

It follows that
index(grad(f o ¢,0) = (—1).

Note that
grad(f o ¢)(u) = d(f o @),
is determined by < , > on R™. By definition
index(grad(f),z) = index(de ™" o grad(f o ©),0),

where grad(f) is defined by

df o) (dipu(a)) =< grad(f)(p(u)), dpu(a) >=< dg,grad(f)(p(u)),a >

for all @ € R™. Tt follows that grad(f o ¢) = dpt o grad(f) o ¢ differs from
de~1 o grad(f) o o precisely by

a:dptodp: U — GLy(m).

But « is homotopic in GL4 (m) into the constant map onto idgm. This induces

a homotpy of vector fields, which does not change the index. W

Lemma 6.29. Let U C R™ be open and v : U — R™ be a vector field with a

nondegenerate zero z. Let s, : U — U X R™ be the corresponding section of the
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trivial bundle. Then s, intersects the zero section U x 0 transversally at z, and

the intersection nuymber is

(—1)™index(v, z).

Proof. The intersection number of 5, : U — U x R™, z +— (z,0(x)) with the

zero section is given by the direct sum orientation:
d(s0)(R" @ T(U % 0)(z,0) = T(U xR™)(.,0),

where we identify T'(U x R™)(, o) with R™ x R™ = R*™ and T'(U x 0),,) with

R™ x 0. The sum is direct because

() d(sv)z(a) = (a,dv-(a))

and dv, is an isomorphism. We know that dv(eq,...,e,,) is positively respec-
tively negatively oriented if ind(v, z) = +1 respectively —1. The orientation of

R?™ given by (x) is calculated from the following sequence of base changes:

((e1,do.(e1)), ..., (em,dvz(em)), (€1,0), ..., (em,0))

positive determinant

((0,dv.(e1)),...,(0,dv,(en)), (e1,0),..., (em,0))

positive determinant

((0,e1),...,(0,em)), (e1,0),...,(em,0))

(=nm

((e1,0),...,(em,0)),(0,e1),...,(0,em))

Theorem 6.30. Let M be a closed manifold and v : M — R¥ be a vector field

on M with only nondegnerate zeroes x1,...,x.. Then

x(M) = Z index (v, ;).

1<i<r

Proof. v induces the section s, : M — T'M. Intersection numbers and indices

can be calulated using an oriented coordinate system. Let U C R™ be open

and let z be the only zero of v in U. Let 7 : TM|Uf] x R™ be a local oriented
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trivialization. Consider the diagram

TMU —— U x R™

o

SH\UT Tg

U j— U
We have
I(so|U, U x 0) = I(s,U x 0).

But
s(z) = (z,dp, " (o(x)))

is the corresponding section over U. Let ¢ : U’ — U be a parametrization with

respect to ind(v, z) is calulated as ind(dp~! o v o ¢,0) The section of U’ x R™

1

corresponding to dp ! ov o is precisely the section s in the following diagram:

eXid
—_

UxR™ U x R™

-
{2
<

with

and it follows that
I(s",U' x 0) =1(s,U x 0}

Corollary 6.31. Let M be a closed oriented manifold and f : M — R be a
Morse function with nondegnerate critical points x1,...,x, of index p1,...,Dp.

Then

1<ilr

Proof. This is imediate from 6.30 and 6.28. W

Example. x(5S™) =1+ (—1)™. This is easily seen by studing the restriction
of the projection (x1,...,Zm+1) — Tm41 to S™. In fact this map has precisely
two crtitical points, a minimum of index 0 and a maximum of index m. In
particular it follows from 6.19 that there does not exist a nonvanishing vector
field on S™ for m even. This is usually called the hairy ball theorem.
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Theorem 6.32 (Poincare-Hopf). Let v be a vector field on a closed oriented

manifold M with only isolated zeroes. Then

xX(M) = Z index(v, x).

x zero of v

Proof. It suffices to show that we can replace v by a vector field with only

nondegenerate zeroes. Thus let U C R™ be open with a single zero at z. Let
A:U —[0,1]

be smooth with A\|[U; = 1 in a neighborhood U; of z and AU \ V = 0 where
Uy C V. Then for y a regular value of v with ||y|| sufficiently small let

Then to has only nondegnerate zeroes on Uy. In fact, to(z) = 0 for = € U; implies
v(z) = y, which implies that dv, is an isomorphism. For ||y|| sufficiently small
there will be no zeroes in V \ Uy (V \ U; is compact). Thus the sum of the
indices in V is equal to the degree of the Gauss map 0V — S™~! thus will not

be changed under a deformation of v into . B
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