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Abstract

Knot complements are aspherical. Whether this extends to ribbon disc
complements, or, equivalently, to standard 2-complexes of labeled oriented
trees, remains unresolved. It is known that prime injective labeled ori-
ented trees are diagragramtically reducible, that is, aspherical in a strong
combinatorial sense. We show that arbitrary prime labeled oriented trees
need not be DR. We conjecture that all injective labeled oriented trees
are aspherical and prove the conjecture under natural conditions. *
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1 Introduction

This article is concerned with the Whitehead conjecture, which states that a
subcomplex of an aspherical 2-complex is aspherical. See Bogley [2] and Rose-
brock [11] for surveys. The conjecture originally arose in the context of knot
theory. The Wirtinger presentation of a knot gives rise to a 2-complex that is
a subcomplex of a contractible 2-complex. Thus, an affirmative answer to the
conjecture implies the asphericity of knot complements in the 3-sphere. Labeled
oriented trees, LOTs for short, are a way to record presentations that general-
ize Wirtinger presentations for knots. They play a central role in the work on
the Whitehead conjecture. Results of Howie [4] imply that the finite case of
the Whitehead conjecture reduces, up to the Andrews-Curtis conjecture, to the
statement that LOT presentations are aspherical.

A labeled oriented graph (LOG) is an oriented graph on vertices {1, ...,n}, where
each oriented edge is labeled by a vertex. Associated with it comes a presen-
tation on generators x1,...,x, in one-to-one correspondence with the vertices.
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For an edge with initial vertex ¢, terminal vertex j and label & we add a re-
lation x;xr = xpx;. We refer to such a presentation as a LOG-presentation.
Associated with a labeled oriented graph P comes a LOG-presentation, a LOG-
complex K (P), the standard 2-complex associated with the presentation, and a
LOG-group G(P), the group defined by the presentation. We say a labeled ori-
ented graph is aspherical if its associated LOG-complex is aspherical. A labeled
oriented tree (LOT) is a labeled oriented graph where the underlying graph is
a tree. A labeled oriented interval (LOI) is a labeled oriented graph where the
underlying graph is an interval. A labeled oriented forest (LOF) is a labeled ori-
ented graph where the underlying graph is a forest. A sub-LOG Q of a labeled
oriented graph P is a subgraph of P such that each edge label of @ is a vertex
label of Q. A sub-LOG @ is proper if it contains at least one edge but is not
all of P. A labeled oriented graph is prime if it does not contain a connected
proper sub-LOG. It is called injective if each vertex label occurs at most once
as an edge label.

A labeled oriented graph is called compressed if every edge contains 3 different
labels. It is called boundary reducible if there is a boundary vertex label that
does not occur as edge label and boundary reduced otherwise. A labeled ori-
ented graph is called interior reducible if there is a vertex with two adjacent
edges with the same label that either point away or towards that vertex. A
labeled oriented graph which is boundary reduced, interior reduced and com-
pressed is called reduced. Any labeled oriented tree can be transformed into a
reduced labeled oriented tree. The homotopy type of the associated 2-complex
remains unchanged under this transformation.

If a labeled oriented graph arises from a knot diagram then all the definitions just
given can be interpreted in terms of the knot. For example injective corresponds
to alternating, performing compressions and interior reductions correspond to
performing certain Reidemeister moves in the knot diagram.

Let K be a finite 2-complex. In this article K will always be the standard 2-
complex of a finite presentation. A surface diagram over K is a piecewise linear
map f:C — K, where C is a cell decomposition of a closed orientable surface
and f carries open cells of C' homeomorphically to open cells of K. If C is a
2-sphere then f is called a spherical diagram. A cell of C will be labeled by the
cell of K it maps to under f. The 1-cells also get their orientation from the 1-
cells of K. In this way C itself carries all the information of the map f: C' — K
and we often speak of the “diagram C”. A surface diagram f:C' — K is called
reducible if there is a pair of 2-cells in C' having a boundary edge ¢ in common
and being mapped by f onto the same 2-cell in K by folding over t. The
surface diagram is called reduced if it is not reducible. A 2-complex K is called
diagrammatically reducible (DR) if each spherical diagram over K is reducible
(or, equivalently, if there does not exist a reduced spherical diagram over K).
A labeled oriented graph is called DR if the corresponding standard-2-complex
is DR. A DR 2-complex is aspherical.
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The starting point for this article is the following result.

Theorem 1.1 (Huck/Rosebrock 2001 [6]): If a labeled oriented forest is com-
pressed and injective and does not contain a boundary reducible sub-LOT, then

it is DR. In particular, an injective compressed prime labeled oriented forest is
DR.

We show that this result does not hold if one removes the injectivity hypothesis.

Theorem 1.2 There does exist a reduced prime labeled oriented interval that
is not DR.

Examples of reduced non-prime labeled oriented trees that are not DR have
been constructed before (see [9]). Here we produce the first examples that are
prime.

We believe that the prime condition in Theorem 1.1 is not needed. In particular,
we conjecture that all injective labeled oriented trees are aspherical. The best
we can do so far is the following:

Theorem 1.3 If the boundary wvertices of each proper interior boundary re-
ducible sub-LOI Q of an injective compressed labeled oriented interval P gener-
ate a free group of rank 1 or 2 in G(Q), then P is aspherical.

Here @ being interior means that the boundary vertices of () are interior vertices
of P.
We thank the referee for his helpful comments.

2 Proof of Theorem 1.2

Given a surface diagram f: M — K over a LOG-complex K we can draw its
dual by replacing the square 2-cells by crossings. We undercross when labels
change. The process is depicted for a single 2-cell of M in Figure 1. We de-

b
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Figure 1: Dualizing a surface diagram

fine an orientation of the link by requiring that when traveling along the link
we encounter the 1-cells as pointing to the left. This leads to an oriented link
projection L on the surface M which contains all the information of the diagram.

Consider the reduced prime labeled oriented interval P shown in Figure 2. Fig-
ure 3 depicts a link projection on a 2-sphere that is a reduced spherical diagram
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over P. Thus P is not DR. This proves Theorem 1.2. O
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Figure 3: Spherical diagram

This example is the smallest known non-DR example over a reduced LOI. It
is not difficult to see that the 2-complex K (P) collapses via simple homotopy
moves to a 2-complex with a single 2-cell. Thus K (P) is aspherical (see Lyndon
[7]). Tt can also be seen that G(P) is infinite cyclic. The diagram was found by
computer search, as were many others. See [12] for more labeled oriented trees
that are not DR.

3 Proof of Theorem 1.3

A simple way to construct labeled oriented graphs that contain interior sub-
LOIs is the following: Let P’ be a labeled oriented graph and let Q be a labeled
oriented interval with boundary vertices b and &’. Cut P’ at an interior vertex
a such that there are two vertices a and a’ coming from cutting at a, and such
that a’ has valence 1 in the resulting labeled oriented graph P”. Edge labels
are not changed. Identify b with a and b’ with a’. Edges in Q labeled b and b’
are relabeled a and o', respectively. This produces a labeled oriented graph P
that contains @ as a sub-LOT. Since P’ is obtained from P by collapsing Q) we
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use the more intuitive notation P’ = P/Q and P’ = P — ). We say that P is
obtained from P/Q by inserting the labeled oriented interval Q.

Lemma 3.1 If P/Q is a labeled oriented graph that is DR, then P — @Q is DR
as well.

Proof: Note that there is no edge in P — @ labeled by a’. Thus removing the
edge e that contains the boundary vertex a’ gives a labeled oriented graph R
that is a sub-LOG of P/Q and K(R) is obtained from K (P — Q) by collapsing
one 2-cell. As a subcomplex of the DR complex K (P/Q), K(R) is DR. And since
K(R) is obtained from K (P — Q) by collapsing a 2-cell, the complex K (P — Q)
is also DR. Indeed, any spherical diagram f:C — K(P — Q) having the 2-cell
corresponding to e in its image is reducible along an edge labeled a’ and f is a
diagram over the DR complex K(R) otherwise. O

Theorem 3.2 Let Q be a labeled oriented interval with boundary vertices b and
b'. Assume that these vertices generate a free group of rank one or two in G(Q).
Let P be obtained from a labeled oriented forest P/Q by inserting Q. If P/Q,
P —Q, and Q are aspherical, then so is P.

Remark: If P/(Q in the the above theorem is assumed to be DR, then aspheric-
ity of P — @ is implied by Lemma 3.1.

We give a proof of Theorem 3.2 after recalling needed results on amalgamated
products. Suppose A and B are groups and C is a subgroup of both A and
B. We can build a presentation for the amalgamated product G = A ¢ B in
the following way. Choose presentations (X | R) and (X'| R’) for A and B,
respectively. Choose a presentation (Y | S) for C' and denote by t,,and t], words
in X and X’ that represent y € C' as an element of A and B, respectively. Then
(X, X"|R,R,t, = t,,y € Y) presents the amalgamated product G. Let K be
the standard 2-complex associated with this presentation. Note that an element
s € S gives rise to a word w; in the ¢, that represents the trivial element in A.
Hence we can construct a Van Kampen diagram Dy over (X | R) with boundary
word wg. Similarily, we construct a diagram D’ over (X’| R’) with boundary
word wj. We can attach 2-cells with boundary words ¢, = t; to D; to obtain a
diagram with boundary word w’. If we glue it to the diagram —D’, we obtain a
spherical diagram FE; over K. The following result can be found in Baik, Pride

.

Lemma 3.3 The second homotopy module mo(K) is generated by spherical dia-
grams over (X | R), spherical diagrams over (X' | R'), together with the spherical
diagrams FEg, s € S.

Let P be a labeled oriented forest with components C, ..., C,. For every com-
ponent C; choose a vertex a; contained in C;. Let H be the subgroup generated
by the vertices aq, ..., a, in G(P).
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Lemma 3.4 The subgroup H is free of rank n.

Proof: The result is a consequence of Stallings’ Theorem [13]. First note that
the abelianized group G(P)gy is free abelian of rank n and that the a; form a
basis. Furthermore, since K (P) is a subcomplex of a contractible 2-complex, we
have Hy(K(P)) = 0 and thus Ho(G(P)) = 0. Let ¢: F = F(x1,...,z,) — G(P)
be the homomorphism of the free group on 1, ..., z,, to G(P) that sends z; to a;.
This homomorphism induces an isomorphism on the first and second homology
and hence, by Stallings, we have an isomorphism ¢: F/F,, — G(P)/G(P)m
for all m > 1. Here G,, is the m-th term in the lower central series (that
is G; = [G,G] and, inductively, Gy, = [G,Gk—1]). Since the free group F' is
residually nilpotent (see [8], Proposition 3.3, page 14) that is (2, F; = 1, we
see that ¢ is injective. O

Let P be a labeled oriented tree obtained from a labeled oriented tree P/Q by
inserting a labeled oriented interval @ (see the beginning of this section). Let b
and b’ be the boundary vertices of ). Let IV be the kernel of the homomorphism
F(,b) — G(Q) that sends b to b and b to b’ and let S be a set of normal
generators for N. Let H = (b,b’ | S). Note that the map H — m (K (Q)) =
G(Q) is injective. Note further that S is a set of words in {b, b'}*1. Let S’ be the
corresponding set of words in {a,a’}*! obtained by replacing each b by a and
each b/ by o’ and let H = (a,a’ |S’). Let L(P — Q) be the standard 2-complex
obtained from K (P — Q) by adding 2-cells with boundary words s’ € S’.

Lemma 3.5 If both L(P — Q) and K(Q) are aspherical and the map
H' — m (L(P — Q)) is injective, then K(P) is aspherical.

Proof: Glue K(Q) to L(P — Q) by identifying the edges b = a and b’ = o’ and
denote the result by K(Q)U L(P — Q). By the Van-Kampen Theorem we have
M (K(Q) U L(P - Q)) = m(K(Q)) i m(L(P — Q)), where H = (b, | S) =
(a,a’ | S") is the subgroup generated by the two loops in the intersection. Note
that K(Q) U L(P — Q) is a standard 2-complex built for the amalgamated
product as described before we stated Lemma 3.3. Hence that lemma applies
and, because we assumed that both K(Q) and L(P — @) are aspherical, we
see that mo(K(Q) U L(P — @)) is generated by spherical diagrams E,, s € S.
Attach a 3-cell to K(Q)UL(P — Q) for each s’ € S’ to obtain a 3-complex with
trivial second homotopy group. Note that each of these 3-cells contains the
2-cell with boundary word s’ exactly once. Performing simple homotopy moves
on this 3-complex by first collapsing the 3-cells across the 2-cells with boundary
word s’ and then collapsing the 2-cells with boundary word @ = b and o’ = ¥’
across the edges b and V', respectively, we obtain the 2-complex K(P). Thus
ma (K (P)) = 0. O

Proof of Theorem 3.2: Assume first that the subgroup H = (b,b') of G(Q) is
free of rank two where b, b’ are the boundary vertices of Q. Then N, the kernel
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of the map F(b,b') — H is trivial, hence S and S’ can be chosen to be empty.
So L(P - Q) = K(P— Q). Thus L(P — @) and K(Q) are aspherical. Note
that H = (a,a’ | —) is free of rank 2, hence the map H' — m(L(P — Q)) =
m (K (P — Q)) is injective by Lemma 3.4. Now Lemma 3.5 implies the result.
Next assume that H is free of rank one. Then H — G(Q) — G(Q)qa is an
isomorphism since G(Q)4p is free of rank one, generated by any vertex in @, in
particular the vertex b. Moreover, since b = b in G(Q)qp, we have b =’ in H.
Thus we can take S = {bb’~'} and S’ = {aa’~'}. In L(P — Q) we collapse the 2-
cell with boundary word a = a’ across the edge a’. This simple homotopy move
turns L(P — Q) into K(P/Q). Since we assumed K (P/Q) to be aspherical, we
see that L(P — @) is aspherical. The complex K(Q) is aspherical by hypothesis.
Consider the composition

H' = {a,d’ |a=d) - m(L(P - Q)) - m(K(P/Q)) — Hi(K(P/Q)).

Now H1(K(P/Q)) = G(P/Q)ab is cyclic, generated by any vertex in P/Q, in
particular by the vertex a. This shows that the composition is an isomorphism,
and hence that H' — m(L(P — Q)) is injective. Now Lemma 3.5 implies the
result. (]

Proof of Theorem 1.3: Let W be the set of all injective compressed labeled
oriented forests where the underlying graph is a disjoint union of intervals, and
where the boundary vertices of all proper interior boundary reducible sub-LOIs
Q generate a free group in G(Q). Note that if P’ is a sub-LOF of P € W, then
P ew.

We first show that if ) is a maximal proper interior boundary reducible sub-
LOIin P € W, then P/Q € W. The labeled oriented forest P/Q is obtained by
collapsing @ in P to a single vertex. If a,a’ are the boundary vertices of @, then
at least one of them, say a’, does not occur as an edge label in P — ). Label
the vertex that @ collapses to with the letter a. The labeled oriented forest P
is obtained from P/Q by inserting Q). Now suppose that @’ is a proper interior
boundary reducible sub-LOT of P/Q. If Q' contains the vertex a, then inserting
Q leads to a proper interior boundary reducible sub-LOI Q" in P that contains
). This contradicts maximality of ). Hence @’ does not contain a and hence
is also a proper interior boundary reducible sub-LOI of P. It follows that the
boundary vertices of Q' generate a free group in G(Q’). This shows that P/Q
is contained in W.

We will show that every P in W is aspherical by induction on v(P), the number
of vertices. If v(P) = 1, then P consists of a single vertex and hence is aspherical.
Assume that v(P) =n > 0. If P does not contain a proper boundary reducible
sub-LOI, then it is aspherical by Theorem 1.1. If P does contain a proper
boundary reducible sub-LOI, then it contains a maximal such sub-LOI Q. We
first address the case where @ is not interior. Then P is the union of @ and
P — @, the intersection being a vertex a. Both @) and P — @ are contained in
W and contain fewer that n vertices. It follows that both @ and P — @ are
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aspherical, in particular torsion-free. Hence the vertex a generates an infinite
cyclic group in both G(Q) and G(P — Q). Asphericity of P now follows from
Lemma 3.3. Next we consider the case where (@) is interior. We know that @,
P — @, and P/Q are all contained in W, each containing fewer than n vertices.
It follows by induction that @, P — @ and P/Q are all aspherical. Since the
boundary vertices of () generate a free subgroup of G(Q) it follows from Theorem
3.2 that P is aspherical. O

4 Examples

It is easy to construct examples, where the boundary of ) generates a free group
of rank 1. This is the case for example if () is a presentation of a knot. In fact
in all known examples of non-prime reduced labeled oriented trees that are not
DR, the sub-LOT @ does come from a knot (see [9]). So we know that these
labeled oriented trees are aspherical but not DR.

It is also not difficult to give examples of labeled oriented intervals where the
boundary vertices generate a free group of rank two. Note that the 2-complex
associated with a labeled oriented graph is a square complex, that is every 2-cell
has four edges in its boundary. A square complex is called non-positively curved
if the vertex link does not contain edge cycles of length shorter than four.

Theorem 4.1 Let P be a compressed labeled oriented tree whose 2-complex
K(P) is a non-positively curved square complex. Let a,b be vertices in P that
do not appear in the same relation. Then {(a,b) is free of rank 2.

Proof: Suppose {(a,b) is not free of rank 2. Then there exists a reduced word w
in {a,b}*! that represents the trivial element in G(P). So there is a van Kampen
diagram M with boundary word w. Since K (P) is non-positively curved each
inner vertex of M has valence at least 4, thus the curvature at every inner vertex
is not positive. Since the Euler characteristic of M is one, we have to have a
vertex of positive curvature on the boundary by the combinatorial Gauss-Bonnet
Theorem. Thus two consecutive 1-cells in the boundary of M are part of the
same 2-cell of M. Since P is compressed these two 1-cells cannot have the same
label. They cannot be labeled by a and b since a,b do not appear in the same
relation. This is a contradiction since w consists of a, b and their inverses only.[]

In [10], Figure 6, conditions on a labeled oriented tree P are given that imply
that the corresponding LOT presentation is C(4)-T(4). These combinatorial
conditions imply that the complex K (P) is non-positively curved. Example 7
in [10] is an example of labeled oriented tree whose 2-complex is non-positively
curved.
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There are also examples, where the boundary of the sub-LOI does not generate
a free subgroup. Consider the labeled oriented interval @ that gives rise to the
presentation (a,b,c¢ |ac = ¢b,ca = ab). Note that the group G(Q) is generated
by the boundary vertices a and ¢ because b = a~'ca. The group G(Q) is not
free of rank one ore two. Indeed, G(Q) is presented by (a,c | a~lca = ¢ lac).
If we set z = a~'c we get the presentation (a,z | aza™ = 2?), thus G(Q) is
isomorphic to the Baumslag-Solitar group B(1,2).

Note that the labeled oriented interval @ above is reduced. We can add a
vertex d and an edge from c to d labeled by b to obtain a compressed, boundary
reducible labeled oriented interval @’. Note that the groups G(Q) and G(Q')
are isomorphic and that the subgroup generated by a and d is not free of rank
one, and certainly not free of rank two because B(1,2) is solvable and hence
does not contain free subgroups that are not cyclic.
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