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Abstract

By “alternative set theories” we mean systems of set theory differing
significantly from the dominant ZF (Zermelo-Frankel set theory) and its
close relatives (though we will review these systems in the article). Among
the systems we will review are typed theories of sets, Zermelo set theory
and its variations, New Foundations and related systems, positive set
theories, and constructive set theories.

An interest in the range of alternative set theories does not presuppose
an interest in replacing the dominant set theory with one of the alterna-
tives; acquainting ourselves with foundations of mathematics formulated
in terms of an alternative system can be instructive as showing us what
any set theory (including the usual one) is supposed to do for us. The
study of alternative set theories can dispel a facile identification of “set
theory” with “Zermelo-Fraenkel set theory”; they are not the same thing.
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1 Why set theory?

Why do we do set theory in the first place? The most immediately familiar
objects of mathematics which might seem to be sets are geometric figures: but
the view that these are best understood as sets of points is a modern view.
Classical Greeks, while certainly aware of the formal possibility of viewing ge-
ometric figures as sets of points, rejected this view because of their insistence
on rejecting the actual infinite. Even an early modern thinker like Spinoza (see
[36]) could comment that it is obvious that a line is not a collection of points
(whereas for us it may hard to see what else it could be).

Cantor’s set theory (which we will not address directly here as it was not
formalized) arose out of an analysis of complicated subcollections of the real
line defined using tools of what we would now call topology (a reference is
[8]). A better advertisement for the usefulness of set theory for foundations of
mathematics (or at least one easier to understand for the layman) is Dedekind’s
definition of real numbers using “cuts” in the rational numbers (see [12]) and
the definition of the natural numbers as sets due to Frege and Russell (see [15]).

Most of us agree on what the theories of natural numbers, real numbers,
and Euclidean space ought to look like (though constructivist mathematicians
will have differences with classical mathematics even here). There was at least
initially less agreement as to what a theory of sets ought to look like (or even
whether there ought to be a theory of sets). The confidence of at least some
mathematicians in their understanding of this subject (or in its coherence as a
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subject at all) was shaken by the discovery of paradoxes in “naive” set theory
around the beginning of the 20th century. A number of alternative approaches
were considered then and later, but a single theory, the Zermelo-Frankel theory
with the Axiom of Choice (ZFC ) dominates the field in practice. One of the
strengths of the Zermelo-Frankel set theory is that it comes with an image of
what the world of set theory is (just as most of us have a common notion of
what the natural numbers, the real numbers, and Euclidean space are like): this
image is what is called the “cumulative hierarchy” of sets.

1.1 The Dedekind construction of the reals

In the 19th century, analysis (the theory of the real numbers) needed to be put
on a firm logical footing. Dedekind’s definition of the reals (see [12]) was a tool
for this purpose.

Suppose that the rational numbers are understood (this is of course a major
assumption, but certainly the rationals are more easily understood than the
reals).

Dedekind proposed that the real numbers could be uniquely correlated with
cuts in the rationals, where a cut was determined by a pair of sets (L,R) with
the following properties: L and R are sets of rationals. L and R are both
nonempty and every element of L is less than every element of R (so the two
sets are disjoint). L has no greatest element. The union of L and R contains
all rationals.

If we understand the theory of the reals prior to the cuts, we can say that
each cut is of the form L = (−∞, r) ∩ Q, R = [r,∞) ∩ Q, where Q is the
set of all rationals and r is a unique real number uniquely determining and
uniquely determined by the cut. It is obvious that each real number r uniquely
determines a cut in this way (but we need to show that there are no other
cuts). Given an arbitrary cut (L,R), we propose that r will be the least upper
bound of L. The Least Upper Bound Axiom of the usual theory of the reals
tells us that L has a least upper bound (L is nonempty and any element of
R (which is also nonempty) is an upper bound of L, so L has a least upper
bound). Because L has no greatest element, its least upper bound r cannot
belong to L. Any rational number less than r is easily shown to belong to L
and any rational number greater than or equal to r is easily shown to belong to
R, so we see that the cut we chose arbitrarily (and so any cut) is of the form
L = (−∞, r) ∩ Q, R = [r,∞) ∩ Q.

A bolder move (given a theory of the rationals but no prior theory of the
reals) is to define the real numbers as cuts. Notice that this requires us to have
not only a theory of the rational numbers (not difficult to develop) but also a
theory of sets of rational numbers: if we are to understand a real number to be
identified with a cut in the rational numbers, where a cut is a pair of sets of
rational numbers, we do need to understand what a set of rational numbers is.
If we are to demonstrate the existence of particular real numbers, we need to
have some idea what sets of rational numbers there are.

An example: when we have defined the rationals, and then defined the reals
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as the collection of Dedekind cuts, how do we define the square root of 2? It is
reasonably straightforward to show that ({x ∈ Q | x < 0 ∨ x2 < 2}, {x ∈ Q |
x > 0∧x2 ≥ 2} is a cut and (once we define arithmetic operations) that it is the
positive square root of two. When we formulate this definition, we appear to
presuppose that any property of rational numbers determines a set containing
just those rational numbers that have that property.

1.2 The Frege-Russell definition of the natural numbers

Frege ([15]) and Russell ([33]) suggested that the simpler concept “natural num-
ber” also admits analysis in terms of sets. The simplest application of natural
numbers is to count finite sets. We are all familiar with finite collections with
1,2,3, . . . elements. Additional sophistication may acquaint us with the empty
set with 0 elements.

Now consider the number 3. It is associated with a particular property of
finite sets: having three elements. With that property it may be argued that we
may naturally associate an object, the collection of all sets with three elements.
It seems reasonable to identify this set as the number 3. This definition might
seem circular (3 is the set of all sets with 3 elements?) but can actually be put
on a firm, non-circular footing.

Define 0 as the set whose only element is the empty set. Let A be any set;
define A+ 1 as the collection of all sets a∪ {x} where a ∈ A and x 6∈ a (all sets
obtained by adding a new element to an element of A). Then 0 + 1 is clearly
the set we want to understand as 1, 1 + 1 is the set we want to understand as
2, 2 + 1 is the set we want to understand as 3, and so forth.

We can go further and define the set N of natural numbers. 0 is a natural
number and if A is a natural number, so is A + 1. If a set S contains 0 and
is closed under successor, it will contain all natural numbers (this is one form
of the principle of mathematical induction). Define N as the intersection of all
sets I which contain 0 and contain A+ 1 whenever A is in I and A+ 1 exists.
One might doubt that there is any inductive set, but consider the set V of all
x such that x = x (the universe). There is a formal possibility that V itself
is finite, in which case there would be a last natural number {V }; one usually
assumes an Axiom of Infinity to rule out such possibilities.

2 Naive set theory

In the previous section, we took a completely intuitive approach to our appli-
cations of set theory. We assumed that the reader would go along with certain
ideas of what sets are like.

What are the identity conditions on sets? It seems entirely in accord with
common sense to stipulate that a set is precisely determined by its elements:
two sets A and B are the same if for every x, either x ∈ A and x ∈ B or x 6∈ A

and x 6∈ B:
A = B ↔ (∀x.x ∈ A↔ x ∈ B).
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This is called the axiom of extensionality .
It also seems reasonable to suppose that there are things which are not sets,

but which are capable of being members of sets (such objects are often called
atoms or urelements). These objects will have no elements (like the empty set)
but will be distinct from one another and from the empty set. This suggests the
alternative weaker axiom of extensionality (perhaps actually closer to common
sense),

set(A) ∧ set(B) ∧ (∀x.x ∈ A↔ x ∈ B) → A = B

with an accompanying axiom of sethood

x ∈ A→ set(A)

What sets are there? The simplest collections are given by enumeration
(the set of {Tom, Dick, Harry} of men I see over there, or (more abstractly)
the set {−2, 2} of square roots of 4. But even for finite sets it is often more
convenient to give a defining property for elements of the set: consider the set
of all grandmothers who have a legal address in Boise, Idaho; this is a finite
collection but it is inconvenient to list its members. The general idea is that
for any property P , there is a set of all objects with property P . This can be
formalized as follows: For any formula P (x), there is a set A (the variable A
should not be free in P (x)) such that

(∀x.x ∈ A↔ P (x)).

This is called the axiom of comprehension. If we have weak extensionality and
a sethood predicate, we might want to say

(∃A.set(A) ∧ (∀x.x ∈ A↔ P (x))).

The theory with these two axioms of extensionality and comprehension (usu-
ally without sethood predicates) is called naive set theory .

It is clear that comprehension allows the definition of finite sets: our set of
men {Tom, Dick, Harry} can also be written {x | x = Tom ∨ x = Dick ∨ x =
Harry}. It also appears to allow for the definition of infinite sets, such as the
set ({x ∈ Q | x < 0 ∨ x2 < 2} mentioned above in our definition of the square
root of 2.

Unfortunately, naive set theory is inconsistent. Russell give the most con-
vincing proof of this, although his was not the first paradox to be discovered:
let P (x) be the property x 6∈ x. By the axiom of comprehension, there is a set
R such that for any x, x ∈ R iff x 6∈ x. But it follows immediately that R ∈ R

iff R 6∈ R, which is a contradiction.
It must be noted that our formalization of naive set theory is an anachronism.

Cantor did not fully formalize his set theory, so it cannot be determined whether
his system falls afoul of the paradoxes (he did not think so, and there are some
who agree with him now). Frege formalized his system more explicitly, but his
system was not precisely a set theory in the modern sense: the most that can
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be said is that his system is inconsistent, for basically the reason given here,
and a full account of the differences between Frege’s system and our “naive set
theory” is beside the point (though historically certainly interesting).

2.1 The other paradoxes of naive set theory

Two other paradoxes of naive set theory are usually mentioned, the paradox
of Burali-Forti (which has historical precedence: see [7]) and the paradox of
Cantor. To review these other paradoxes is a convenient way to review as well
what the early set theorists were up to, so we will do it. Our formal presentation
of these paradoxes is anachronistic; we are interested in their mathematical
content, but not necessarily in the exact way that they were originally presented.

Cantor in his theory of sets was concerned with defining notions of infinite
cardinal number and infinite ordinal number. Consideration of the largest or-
dinal number gave rise to the Burali-Forti paradox, and consideration of the
largest cardinal number gave rise to the Cantor paradox.

Infinite ordinals can be presented in naive set theory as isomorphism classes
of well-orderings (a well-ordering is a linear order ≤ with the property that
any nonempty subset of its domain has a ≤-least element). We use reflexive,
antisymmetric, transitive relations ≤ as our linear orders rather than the as-
sociated irreflexive, asymmetric, transitive relations <, because this allows us
to distinguish between the ordinal numbers 0 and 1 (Russell and Whitehead
took the latter approach and were unable to define an ordinal number 1 in their
Principia Mathematica).

There is a natural order on ordinal numbers (induced by the fact that of any
two well-orderings, at least one will be isomorphic to an initial segment of the
other) and it is straightforward to show that it is a well-ordering. Since it is a
well-ordering, it belongs to an isomorphism class (an ordinal number!) Ω.

It is also straightforward to show that the order type of the natural order on
the ordinals restricted to the ordinals less than α is α: the order on {0, 1, 2} is
of order type 3, the order on the finite ordinals {0, 1, 2, . . .} is the first infinite
ordinal ω, and so forth.

But then the order type of the ordinals < Ω is Ω itself, which means that
the order type of all the ordinals (including Ω) is “greater” – but Ω was defined
as the order type of all the ordinals and should not be greater than itself!

This paradox was presented first (Cantor was aware of it) and Cantor did
not think that it invalidated his system.

Cantor defined two sets as having the same cardinal number if there was a
bijection between them. This is of course simply common sense in the finite
realm; his originality lay in extending it to the infinite realm and refusing to
shy from the apparently paradoxical results. In the infinite realm, cardinal and
ordinal number are not isomorphic notions as they are in the finite realm: a
well-ordering of order type ω (say, the usual order on the natural numbers)
and a well-ordering of order type ω + ω (say, the order on the natural numbers
which puts all odd numbers before all even numbers and puts the sets of odd and
even numbers in their usual order) represent different ordinal numbers but their
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fields (being the same set!) are certainly of the same size. Such “paradoxes” as
the apparent equinumerousness of the natural numbers and the perfect squares
(noted by Galileo) and the one-to-one correspondence between the points on
concentric circles of different radii, noted since the Middle Ages, were viewed
as matter-of-fact evidence for equinumerousness of particular infinite sets by
Cantor.

Novel with Cantor was the demonstration (in [9]; Cantor’s paradox, for
which an original reference is difficult to find, is an immediate corollary of this
theorem of Cantor) that there are infinite sets of different sizes according to
this criterion. If A is a set, define the power set of A as the set of all subsets
of A: P(A) = {B | (∀x.x ∈ B → x ∈ A)}. Cantor proved that there can be no
bijection between A and P(A) for any set A. Suppose that f is a bijection from
A to P(A). Define C as {a ∈ A | a 6∈ f(a)}. Because f is a bijection there must
be c such that f(c) = C. Now we notice that c ∈ C ↔ c 6∈ f(c) = C, which is a
contradiction.

Cantor’s theorem just proved shows that for any set A, there is a set P(A)
which is larger. Cantor’s paradox arises if we try to apply Cantor’s theorem to
the set of all sets (or to the universal set, if we suppose (with common sense)
that not all objects are sets). If V is the universal set, then P(V ), the power
set of the universal set (the set of all sets) must have larger cardinality than
V . But clearly no set can be larger in cardinality than the set which contains
everything!

Cantor’s response to both of these paradoxes was telling (and can be for-
malized in ZFC or in the related systems which admit proper classes, as we
will see below). He essentially reinvoked the classical objections to infinite sets
on a higher level. Both the largest cardinal and the largest ordinal arise from
considering the very largest collections (such as the universe V ). Cantor drew a
distinction between legitimate mathematical infinities such as the countable in-
finity of the natural numbers (with its associated cardinal number ℵ0 and many
ordinal numbers ω, ω+1 . . . , ω+ω, . . .), the larger infinity of the continuum, and
further infinities derived from these, which he called transfinite, and what he
called the Absolute Infinite, the infinity of the collection containing everything
and of such related notions as the largest cardinal and the largest ordinal. In
this he followed St. Augustine (see [4]), who argued in late classical times that
the infinite collection of natural numbers certainly existed as an actual infinity
because God was aware of each and every natural number, but because God’s
knowledge encompassed all the natural numbers their totality was somehow fi-
nite in His sight. The fact that his defense of set theory against the Burali-Forti
and Cantor paradoxes was subsequently successfully formalized in ZFC and the
related class systems leads some to believe that Cantor’s own set theory was
not implicated in the paradoxes.
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3 Typed theories

An early response to the paradoxes of set theory (by Russell, who discovered
one of them) was the development of type theory (see the appendix to [33], or
[34]).

The simplest theory of this kind is obtained as follows. We admit sorts of
object indexed by the natural numbers (this is purely a typographical conve-
nience; no actual reference to natural numbers is involved). Type 0 is inhabited
by “individuals” with no specified structure. Type 1 is inhabited by sets of type
0 objects, and in general type n+ 1 is inhabited by sets of type n objects.

The type system is enforced by the grammar of the language. Atomic sen-
tences are equations or membership statements, and they are only well-formed
if they take one of the forms xn = yn or xn ∈ yn+1.

The axioms of extensionality of TST take the form

An+1 = Bn+1 ↔ (∀xn.xn ∈ An+1 ↔ xn ∈ Bn+1);

there is a separate axiom for each n.
The axioms of comprehension of TST take the form (for any choice of a type

n, a formula φ, and a variable An+1 not free in φ)

(∃An+1.(∀xn.xn ∈ An+1 ↔ φ))

It is interesting to observe that the axioms of TST are precisely analogous
to those of naive set theory.

This is not the original type theory of Russell. Leaving aside Russell’s use
of “propositional functions” instead of classes and relations, the system of Prin-
cipia Mathematica ([34], hereinafter PM )) fails to be a set theory because it has
separate types for relations (propositional functions of arity > 1). It was not
until Norbert Wiener observed in 1914 ([39]) that it was possible to define the
ordered pair as a set (his definition of 〈x, y〉 was not the current {{x}, {x, y}},
due to Kuratowski ([22]) , but {{{x}, ∅}, {{y}}}) that it became clear that it is
possible to code relation types into set types. Russell frequently said in English
that relations could be understood as sets of pairs (or longer tuples) but he had
no implementation of this idea (in fact, he defined ordered pairs as relations in
PM rather than the now usual reverse!) For a discussion of the history of this
simplified type theory, see [38].

Further, Russell was worried about circularity in definitions of sets (which he
believed to be the cause of the paradoxes) to the extent that he did not permit
a set of a given type to be defined by a condition which involved quantification
over the same type or a higher type. This predicativity restriction weakens the
mathematical power of set theory to an extreme degree.

In Russell’s system, the restriction is implemented by characterizing a type
not only by the type of its elements but by an additional integer parameter
called its “order”. For any object with elements, the order of its type is higher
than the order of the type of its elements. Further, the comprehension axiom is
restricted so that the condition defining a set of a type of order n can contain
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parameters only of types with order ≤ n and quantifiers only over types with
order < n. Russell’s system is further complicated by the fact that it is not a
theory of sets, as we noted above, because it also contains relation types (this
makes a full account of it here inappropriate). Even if we restrict to types
of sets, a simple linear hierarchy of types is not possible if types have order,
because each type has “power set” types of each order higher than its own.

We present a typed theory of sets with predicativity restrictions (we have
seen this in work of Marcel Crabbé, but it may be older). In this system,
the types do not have orders, but Russell’s ramified type theory with orders
(complete with relation types) can be interpreted in it (a technical result of
which we do not give an account here).

The axioms of comprehension of predicative TST take the form (for any
choice of a type n, a formula φ, and a variable An+1 not free in φ, satisfying
the restriction that no parameter of type n+2 or greater appears in φ, nor does
any quantifier over type n+ 1 or higher appear in φ)

(∃An+1.(∀xn.xn ∈ An+1 ↔ φ))

Predicative mathematics does not permit unrestricted mathematical induc-
tion: In impredicative type theory, we can define 0 and the “successor” A+ of a
set just as we did above in naive set theory (in a given type n) then define the
set of natural numbers N n+1 = {mn | (∀An+1.0n ∈ An+1 ∧ (∀Bn.Bn ∈ An+1 →
(B+)n ∈ An+1) → mn ∈ An+1)}. Russell would object that the set N n+1 is
being “defined” in terms of facts about all sets An+1: something is a type n+1
natural number just in case it belongs to all type n+ 1 inductive sets. But one
of the type n + 1 sets in terms of which it is being “defined” is N n+1 itself.
(Independently of predicativist scruples, one does need an Axiom of Infinity to
ensure that all natural numbers exist; this is frequently added to TST , as is the
Axiom of Choice).

For similar reasons, predicative mathematics does not permit the Least Up-
per Bound Axiom of analysis (the proof of this axiom in a set theoretical im-
plementation of the reals as Dedekind cuts fails for the same kind of reason).

Russell solved these problems in PM by adopting an Axiom of Reducibility
which in effect eliminated the predicativity restrictions, but in later comments
on PM he advocated abandoning this axiom.

Most mathematicians are not predicativists; in our opinion the best answer
to predicativist objections is to deny that comprehension axioms can properly
be construed as definitions (though we admit that we seem to find ourselves
frequently speaking loosely of φ as the condition which “defines” {x | φ}).

It should be noted that it is possible to do a significant amount of mathe-
matics while obeying predicativist scruples. The set of natural numbers cannot
be defined in the predicative version of TST , but the set of singletons of natural
numbers can be defined and can be used to prove some instances of induction
(enough to do quite a bit of elementary mathematics). Similarly, a version of
the Dedekind construction of the real numbers can be carried out, in which
many important instances of the least upper bound axiom will be provable.
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Type theories are still in use, mostly in theoretical computer science, but
these are type theories of functions , with complexity similar to or greater than
the complexity of the system of PM , and fortunately outside the scope of this
study.

4 Zermelo set theory and its refinements

In this section we discuss the development of the usual set theory ZFC . It did
not spring up full-grown like Athena from the head of Zeus!

4.1 Zermelo set theory

The original theory Z of Zermelo ([40]) had the following axioms:

Extensionality: Sets with the same elements are equal. (The original version
appears to permit non-sets (atoms) which all have no elements, much as
in my discussion above under naive set theory).

Pairing: For any objects a and b, there is a set {a, b} = {x | x = a ∨ x = b}.
(the original axiom also provided the empty set and singleton sets).

Union: For any set A, there is a set
⋃
A = {x | (∃y.x ∈ y ∧ u ∈ A)}. The

union of A contains all the elements of elements of A.

Power Set: For any set A, there is a set P(A) = {x | (∀y.y ∈ x → y ∈ A)}.
The power set of A is the set of all subsets of A.

Infinity: There is an infinite set. Zermelo’s original formulation asserted the
existence of a set containing ∅ and closed under the singleton operation:
{∅, {∅}, {{∅}}, . . .}. It is now more usual to assert the existence of a set
which contains ∅ and is closed under the von Neumann successor operation
x 7→ x∪{x}. (Neither of these axioms implies the other in the presence of
the other axioms, though they yield theories with the same mathematical
strength).

Separation: For any property P (x) of objects and any set A, there is a set
{x ∈ A | P (x)} which contains all the elements of A with the property P .

Choice: For every set C of pairwise disjoint nonempty sets, there is a set whose
intersection with each element of C has exactly one element.

We note that we do not need an axiom asserting the existence of ∅ (which
is frequently included in axiom lists as it was in Zermelo’s original axiom set):
the existence of any object (guaranteed by logic unless we use a free logic) along
with separation will do the trick, and even if we use a free logic the set provided
by Infinity will serve.

Every axiom of Zermelo set theory except Choice is an axiom of naive set
theory. Zermelo chose enough axioms so that the mathematical applications of
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set theory could be carried out and restricted the axioms sufficiently that the
paradoxes could not apparently be derived.

The most general comprehension axiom of Z is the axiom of Separation. If
we try to replicate the Russell paradox by constructing the set R′ = {x ∈ A |
x 6∈ x}, we discover that R′ ∈ R′ ↔ R′ ∈ A ∧ R′ 6∈ R′, from which we deduce
R′ 6∈ A. For any set A, we can construct a set which does not belong to it.
Another way to put this is that Z proves that there is no universal set: if we
had the universal set V , we would have naive comprehension, because we could
define {x | P (x)} as {x ∈ V | P (x)} for any property P (x), including the fatal
x 6∈ x.

In order to apply the axiom of separation, we need to have some sets A
from which to carve out subsets using properties. The other axioms allow the
construction of a lot of sets (all sets needed for classical mathematics outside
of set theory, though not of all the sets that even Cantor had constructed with
apparent safety).

The elimination of the universal set seems to arouse resistance in some quar-
ters (many of the alternative set theories recover it, and the theories with sets
and classes recover at least a universe of all sets). On the other hand, the
elimination of the universal set seems to go along with Cantor’s idea that the
problem with the paradoxes was that they involved Absolutely Infinite collec-
tions – purported “sets” that are too large.

4.2 From Zermelo set theory to ZFC

Zermelo set theory came to be modified in certain ways.
The formulation of the axiom of separation was made explicit: “for each

formula φ of the first-order language with equality and membership, {x ∈ A | φ}
exists.” Zermelo’s original formulation referred more vaguely to properties in
general (and Zermelo himself seems to have objected to the modern formulation
as too restrictive).

The non-sets are usually abandoned (so the formulation of Extensionality is
stronger) though ZFA (Zermelo-Frankel set theory with atoms) was used in the
first independence proofs for the Axiom of Choice.

The axiom scheme of Replacement was added by Frankel to make it pos-
sible to construct larger sets (even ℵω cannot be proved to exist in Zermelo
set theory). The basic idea is that any collection the same size as a set is a
set, which can be logically formulated as follows: if φ(x, y) is a functional for-
mula ((∀x.(∀yz.φ(x, y) ∧ φ(x, z) → y = z))) and A is a set then there is a set
{y | (∃x ∈ A, φ(x, y))}.

The axiom scheme of Foundation was added as a definite conception of what
the universe of sets is like was formed. The idea of the cumulative hierarchy of
sets is that we construct sets in a sequence of stages indexed by the ordinals:
at stage 0, the empty set is constructed; at stage α+ 1, all subsets of the set of
stage α sets are constructed; at a limit stage λ, the union of all stages with index
less than λ is constructed. Replacement is important for the implementation of
this idea, as Z only permits one to construct the stages Vn and Vω+n for n a
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natural number (we use the notation Vα for the collection of all sets constructed
at stage α). The intention of the Foundation Axiom is to assert that every set
belongs to some Vα; the commonest formulation is the mysterious assertion that
for any nonempty set A, there is an element x of A such that x is disjoint from
A. To see that this is at least implied by Foundation, consider that there must
be a smallest α such that A meets Vα, and any x in this Vα will have elements
(if any) only of smaller rank and so not in A.

Zermelo set theory has difficulties with the cumulative hierarchy. The usual
form of the Zermelo axioms (or Zermelo’s original form) does not prove the
existence of Vα as a set unless α is finite. If the Axiom of Infinity is reformulated
to assert the existence of Vω , then the ranks proved to exist as sets by Zermelo set
theory are exactly those which appear in the natural model Vω+ω of this theory.
Also, Zermelo set theory does not prove the existence of transitive closures
of sets, which makes it difficult to assign ranks to sets in general. Zermelo set
theory plus the assertion that every set belongs to an ordinal rank which is a set
implies Foundation, the existence of expected ordinal ranks, and the existence
of transitive closures, and can be interpreted in Zermelo set theory without
additional assumptions.

The Axiom of Choice is an object of suspicion to some mathematicians
because it is not constructive. It has become customary to indicate when a
proof in set theory uses Choice, although most mathematicians accept it as
an axiom. The Axiom of Replacement is sometimes replaced with the Axiom
of Collection, which asserts, for any formula φ(x, y), (∀x ∈ A.(∃y.φ(x, y))) →
(∃C.(∀x ∈ A.(∃y ∈ C.φ(x, y)))). Note that φ here does not need to be functional;
if for every x ∈ A, there are some y’s such that φ(x, y), there is a set such
that for every x ∈ A, there is y in that set such that φ(x, y). One way to
build this set is to take, for each x ∈ A, all the y’s of minimal rank such
that φ(x, y) and put them in C. In the presence of all other axioms of ZFC ,
Replacement and Collection are equivalent; when the axiomatics is perturbed
(or when the logic is perturbed, as in intuitionistic set theory) the difference
becomes important. The Axiom of Foundation is equivalent to ε-Induction here
but not in other contexts: ∈-Induction is the assertion that for any formula φ,
(∀x.(∀y ∈ x.φ(y)) → φ(x)) → (∀x.φ(x)); anything which is true of any set if it
is true of all its elements is true of every set without exception.

4.3 Critique of Zermelo set theory

A common criticism of Zermelo set theory is that it is an ad hoc selection of
axioms chosen to avoid paradox, and we have no reason to believe that it ac-
tually achieves this end. We believe such objections to be unfounded, for two
reasons. The first is that the theory of types (which is the result of a principled
single modification of naive set theory) is easily shown to be precisely equivalent
in consistency strength and expressive power to Z with the restriction that all
quantifiers in the formulas φ in instances of separation must be bounded in a
set; this casts doubt on the idea that the choice of axioms in Z is particularly ar-
bitrary. The fact that the von Neumann-Gödel-Bernays class theory (discussed
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below) turns out to be a conservative extension of ZFC suggests that full ZFC
is a precise formulation of Cantor’s ideas about the Absolute Infinite (and so
not arbitrary). Further, the introduction of the Foundation Axiom identifies the
set theories of this class as the theories of a particular class of structures (the
well-founded sets) of which the Zermelo axioms certainly seem to hold (whether
Replacement holds so evidently is another matter).

These theories are frequently extended with large cardinal axioms (the ex-
istence of inaccessible cardinals, Mahlo cardinals, weakly compact cardinals,
measurable cardinals and so forth). These do not to us signal a new kind of set
theory, but represent answers to the question as to how large the universe of
Zermelo-style set theory is.

The choice of Zermelo set theory (leaving aside whether one goes on to ZFC )
rules out the use of equivalence classes of equinumerous sets as cardinals (and
so the use of the Frege natural numbers) or the use of equivalence classes of
well-orderings as ordinals. There is no difficulty with the use of the Dedekind
cut formulation of the reals (once the rationals have been introduced). Instead
of the equivalence class formulations of cardinal and ordinal numbers, the von
Neumann ordinals are used: a von Neumann ordinal is a transitive set (all of
its elements are among its subsets) which is well-ordered by membership. The
order type of a well-ordering is the von Neumann ordinal of the same length
(the axiom of Replacement is needed to prove that every set well-ordering has
an order type; this can fail to be true in Zermelo set theory, where the von
Neumann ordinal ω + ω cannot be proven to exist but there are certainly well-
orderings of this and longer types). The cardinal number |A| ia defined as
the smallest order type of a well-ordering of A (this requires Choice to work;
without choice, we can use Foundation to define the cardinal of a set A as the
set of all sets equinumerous with A and belonging to the first Vα containing sets
equinumerous with A). This is one respect in which Cantor’s ideas do not agree
with the modern conception; he appears to have thought that he could define
at least cardinal numbers as equivalence classes (or at least that is one way to
interpret what he says), although such equivalence classes would of course be
Absolutely Infinite.

4.4 Weak variations and theories with hypersets

Some weaker subsystems of ZFC are used. Zermelo set theory, the system Z

described above, is still studied. The further restriction of the axiom of sepa-
ration to formulas in which all quantifiers are bounded in sets (∆0 separation)
yields “bounded Zermelo set theory” or “Mac Lane set theory”, so called be-
cause it has been advocated as a foundation for mathematics by Saunders Mac
Lane (see [24]). It is interesting to observe that Mac Lane set theory is precisely
equivalent in consistency strength and expressive power to TST with the Axiom
of Infinity. Z is strictly stronger than Mac Lane set theory; the former theory
proves the consistency of the latter. See [25] for an extensive discussion.

The set theory KPU (Kripke-Platek set theory with urelements, for which
see [5])) is of interest for technical reasons in model theory. The axioms of
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KPU are the weak Extensionality which allows urelements, Pairing, Union,
∆0 separation, ∆0 collection, and ∈-induction for arbitrary formulas. Note
the absence of Power Set. The technical advantage of KPU is that all of its
constructions are “absolute” in a suitable sense. This makes the theory suitable
for the development of an extension of recursion theory to sets.

The dominance of ZFC is nowhere more evident than in the great enthusiasm
and sense of a new departure found in reactions to the very slight variation of
this kind of set theory embodied in versions of ZFC without the foundation
axiom. It should be noted that the Foundation Axiom was not part of the
original system!

We describe two theories out of a range of possible theories of hypersets
(Zermelo-Frankel set theory without foundation). A source for theories of this
kind is [3].

In the following paragraphs, we will use the term “graph” for a relation, and
“extensional graph” for a relation R satisfying (∀yz ∈ field(R).(∀x.xR y ≡
xR z) → y = z). A decoration of a graph G is a function f with the property
that f(x) = {f(y) | y Gx} for all x in the field of G. In ZFC , all well-founded
relations have unique decorations, and non-well-founded relations have no dec-
orations. Aczel proposed his Anti-Foundation Axiom: every set graph has a
unique decoration. Maurice Boffa considered a stronger axiom: every partial,
injective decoration of an extensional set graph G whose domain contains the
G-preimages of all its elements can be extended to an injective decoration of all
of G.

The Aczel system is distinct from the Boffa system in having fewer ill-
founded objects. For example, the Aczel theory proves that there is just one
object which is its own sole element, while the Boffa theory provides a proper
class of such objects. The Aczel system has been especially popular, and we
ourselves witnessed a great deal of enthusiasm for this subversion of the cumu-
lative hierarchy. We are doubtless not the only ones to point this out, but we
did notice and point out to others that at least the Aczel theory has a perfectly
obvious analogue of the cumulative hierarchy. If Aα is a rank, the successor
rank Aα+1 will consist of all those sets which can be associated with graphs G
with a selected point t with all elements of the field of G taken from Aα. The
zero and limit ranks are constructed just as in ZFC . Every set belongs to an
Aα for α less than or equal to the cardinality of its transitive closure. (It seems
harder to impose rank on the world of the Boffa theory, though it can be done:
the proper class of self-singletons is an obvious difficulty, to begin with!).

It is true (and has been the object of applications in computer science) that
it is useful to admit reflexive structures for some purposes. The kind of reflex-
ivity permitted by Aczel’s theory has been useful for some such applications.
However, such structures are modelled in well-founded set theory (using rela-
tions other than membership) with hardly more difficulty, and the reflexivity
admitted by Aczel’s theory (or even by a more liberal theory like that of Boffa)
doesn’t come near the kind of non-well-foundedness found in genuinely alter-
native set theories, especially those with universal set. These theories are close
variants of the usual theory ZFC , caused by perturbing the last axiom to be
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added to this system historically (although, to be fair, the Axiom of Foundation
is the one which arguably defines the unique structure which the usual set the-
ory is about; the anti-foundation axioms thus invite us to contemplate different,
even if closely related, universal structures).

5 Theories with classes

5.1 Class theory over ZFC

Even those mathematicians who accepted the Zermelo-style set theories as the
standard (most of them!) often found themselves wanting to talk about “all
sets”, or “all ordinals”, or similar concepts.

Von Neumann (who actually formulated a theory of functions, not sets),
Gödel, and Bernays developed closely related systems which admit, in addition
to the sets found in ZFC , general collections of these sets. (In [17], it is argued
that the system of von Neumann is actually the first system in which the Axiom
of Replacement was actually implemented correctly (there were technical prob-
lems with Fraenkel’s formulation), so it may actually be the first implementation
of ZFC .)

We present a theory of this kind. Its objects are classes . Among the classes
we identify those which are elements as sets.

Axiom of extensionality: Classes with the same elements are the same.

Definition: A class x is a set just in case there is a class y such that x ∈ y. A
class which is not a set is said to be a proper class.

Axiom of class comprehension: For any formula φ(x) which involves quan-
tification only over all sets (not over all classes), there is a class {x | φ(x)}
which contains exactly those sets x for which φ(x) is true.

The axiom scheme of class comprehension with quantification only over sets
admits a finite axiomatization (a finite selection of formulas φ (most with param-
eters) suffices) and was historically first presented in this way. It is an immediate
consequence of class comprehension that the Russell class {x | x 6∈ x} cannot
be a set (so there is at least one proper class).

Axiom of limitation of size: A class C is proper if and only if there is a class
bijection between C and the universe.

This elegant axiom is essentially due to von Neumann. A class bijection
is a class of ordered pairs; there might be pathology here if we did not have
enough pairs as sets, but other axioms do provide for their existence. It is
interesting to observe that this axiom implies Replacement (a class which is the
same size as a set cannot be the same size as the universe) and, surprisingly,
implies Choice (the von Neumann ordinals make up a proper class essentially
by the Burali-Forti paradox, so the universe must be the same size as the class
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of ordinals, and the class bijection between the universe and the ordinals allows
us to define a global well-ordering of the universe, whose existence immediately
implies Choice).

Although Class Comprehension and Limitation of Size appear to tell us
exactly what classes there are and what sets there are, more axioms are required
to make our universe large enough. These can be taken to be the axioms of Z
(other than extensionality and choice, which are not needed): the sethood of
pairs of sets, unions of sets, power sets of sets, and the existence of an infinite
set are enough to give us the world of ZFC . Foundation is usually added. The
resulting theory is a conservative extension of ZFC : it proves all the theorems
of ZFC about sets, and it does not prove any theorem about sets which is not
provable in ZFC . For those with qualms about choice (or about global choice),
Limitation of Size can be restricted to merely assert that the image of a set
under a class function is a set.

We have two comments about this. First, the mental furniture of set theorists
does seem to include proper classes, though usually it is important to them that
all talk of proper classes can be explained away (the proper classes are in some
sense “virtual”). Second, this theory (especially the version with the strong
axiom of Limitation of Size) seems to capture the intuition of Cantor about the
Absolute Infinite.

A stronger theory with classes, but still essentially a version of standard
set theory, is the Kelley-Morse set theory in which Class Comprehension is
strengthened to allow quantification over all classes in the formulas defining
classes. Kelley-Morse set theory is not finitely axiomatizable, and it is stronger
than ZFC in the sense that it allows a proof of the consistency of ZFC .

5.2 Ackermann set theory

The next theory we present was actually embedded in the set theoretical propos-
als of Paul Finsler, which were (taken as a whole) incoherent (see our notes on
this subject [19]). Ackermann later (and apparently independently) presented
it again. It is to all appearances a different theory from the standard one (it is
our first genuine “alternative set theory”) but it turns out to be essentially the
same theory as ZF (and choice can be added to make it essentially the same as
ZFC ).

Ackermann set theory is a theory of classes in which some classes are sets ,
but there is no simple definition of which classes are sets (in fact, the whole
power of the theory is that the notion of set is indefinable!)

All objects are classes. The primitive notions are equality, membership and
sethood. The axioms are

Axiom of extensionality: Classes with the same elements are equal.

Axiom of class comprehension: For any formula φ, there is a class {x ∈ V | φ(x)}
whose elements are exactly the sets x such that φ(x) (V here denotes the
class of all sets). [But note that it is not the case here that all elements
of classes are sets].
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Axiom of elements: Any element of a set is a set.

Axiom of subsets: Any subset of a set is a set.

Axiom of set comprehension: For any formula φ(x) which does not mention
the sethood predicate and in which all free variables other than x denote
sets, and which further has the property that φ(x) is only true of sets x,
the class {x | φ} (which exists by Class Comprehension since all suitable
x are sets) is a set.

One can conveniently add axioms of Foundation and Choice to this system.
To see the point (mainly, to understand what Set Comprehension says) it is

a good idea to go through some derivations.
The formula x = a∨x = b (where a and b are sets) does not mention sethood,

has only the sets a and b as parameters, and is true only of sets. Thus it defines
a set, and Pairing is true for sets.

The formula (∃y.x ∈ y ∧ y ∈ a), where a is a set, does not mention sethood,
has only the set a as a parameter, and is true only of sets by the Axiom of
Elements (any witness y belongs to the set a, so y is a set, and x belongs to the
set y, so y is a set). Thus Union is true for sets.

The formula (∀y.y ∈ x → y ∈ a), where a is a set, does not mention sethood,
has only the set a as a parameter, and is true only of sets by the Axiom of
Subsets. Thus Power Set is true for sets.

The big surprise is that this system proves Infinity. The formula x 6= x

clearly defines a set, the empty set ∅. Consider the formula (∀I.∅ ∈ I ∧ (∀y.y ∈
I → y ∪ {y} ∈ I) → x ∈ I). This formula does not mention sethood and
has no parameters (or just the set parameter ∅). The class V of all sets has
∅ as a member and contains y ∪ {y} if it contains y by Pairing and Union for
sets (already shown). Thus any x satisfying this formula is a set, whence the
extension of the formula is a set (clearly the usual set of von Neumann natural
numbers). So Infinity is true in the sets of Ackermann set theory.

It is possible (but harder) to prove Replacement as well in the realm of well-
founded sets (which can be the entire universe of sets if Foundation for classes
is added as an axiom). It is demonstrable that the theorems of Ackermann set
theory about well-founded sets are exactly the theorems of ZF ([23],[30]).

We attempt to motivate this theory (in terms of the cumulative hierarchy).
Think of classes as collections which merely exist potentially. The sets are
those classes which actually get constructed. Extensionality for classes seems
unproblematic. All collections of the actual sets could have been constructed
by constructing one more stage of the cumulative hierarchy: this justifies class
comprehension. Elements of actual sets are actual sets; subcollections of actual
sets are actual sets; these do not seem problematic. Finally, we assert that any
collection of classes which is defined without reference to the realm of actual
sets, which is defined in terms of specific objects which are actual, and which
turns out only to contain actual elements is actual. When one gets one’s mind
around this last assertion, it can seem reasonable. A particular thing to note
about such a definition is that it is “absolute”: the collection of all actual sets
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is a proper class and not itself an actual set, because we are not committed to
stopping the construction of actual sets at any particular point; but the elements
of a collection satisfying the conditions of set comprehension do not depend on
how many potential collections we make actual (this is why the the actuality
predicate is not allowed to appear in the “defining” formula).

It may be a minority opinion, but we believe (after some contemplation)
that the Ackermann axioms have their own distinctive philosophical motivation
which deserves consideration, particularly since it turns out to yield basically
the same theory as ZF from an apparently quite different starting point.

Ackermann set theory actually proves that there are classes which have non-
set classes as elements; the difference between sets and classes provably cannot
be as in von Neumann-Gödel-Bernays class theory. A quick proof of this con-
cerns ordinals. There is a proper class von Neumann ordinal Ω, the class of all
set von Neumann ordinals. We can prove the existence of Ω + 1 using set com-
prehension: if Ω were the last ordinal, then “x is a von Neumann ordinal with
a successor” would be a predicate not mentioning sethood, with no parameters
(so all parameters sets), and true only of sets. But this would make the class
of all set ordinals a set, and the class of all set ordinals is Ω itself, which would
lead to the Burali-Forti paradox. So Ω + 1 must exist.

There is a meta-theorem of ZF called the Reflection Principle which asserts
that any first-order assertion which is true of the universe V is also true of
some set. This means that for any particular proof in ZF , there is a set M
which might as well be the universe (because any proof uses only finitely many
axioms). A suitable such set M can be construed as the universe of sets and
the actual universe V can be construed as the universe of classes. The set
M has the closure properties asserted in Elements and Subsets if it is a limit
rank; it can be chosen to have as many of the closure properties asserted in
Set Comprehension (translated into terms of M) as a proof in Ackermann set
theory requires. This machinery is what is used to show that Ackermann set
theory proves nothing about sets that ZF cannot prove: one translates a proof
in Ackermann set theory into a proof in ZFC using the Reflection Principle.

6 New Foundations and related systems

6.1 The definition of NF

We have alluded already to the fact that the simple typed theory of sets TST
can be shown to be equivalent to an untyped theory (Mac Lane set theory, aka
bounded Zermelo set theory). We briefly indicate how to do this: choose any
map f in the model which is an injection with domain the set of singletons of
type 0 objects and range included in type 1 (the identity on singletons of type
0 objects is an example). Identify each type 0 object x0 with the type 1 object
f({x0}); then introduce exactly those identifications between objects of different
types which are required by extensionality: every type 0 object is identified with
a type 1 object, and an easy meta-induction shows that every type n object is
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identified with some type n+1 object. The resulting structure will satisfy all the
axioms of Zermelo set theory except Separation, and will satisfy all instances of
Separation in which each quantifier is bounded in a set (this boundedness comes
in because each instance of Comprehension in TST has each quantifier bounded
in a type, which becomes a bounding set for that quantifier in the interpretation
of Mac Lane set theory). It will satisfy Infinity and Choice if the original model
of TST satisfies these axioms. The simplest map f is just the identity on
singletons of type 0 objects, which will have the effect of identifying each type 0
object with its own singleton (a failure of foundation). It can be arranged for the
structure to satisfy Foundation: for example, if Choice holds type 0 can be well-
ordered and each element of type 0 identified with the corresponding segment in
the well-ordering, so that type 0 becomes a von Neumann ordinal. (A structure
of this kind will never model Replacement, as there will be a countable sequence
of cardinals (the cardinalities of the types) which is definable and cofinal below
the cardinality of the universe.) See [25] for a full account.

Quine’s set theory New Foundations (abbreviated NF ), proposed in 1937 in
his paper “New foundations for mathematical logic” ([28]), is also based on a
procedure for identifying the objects in successive types in order to obtain an
untyped theory. However, in the case of NF and related theories, the idea is
to identify the entirety of type n + 1 with type n; the type hierarchy is to be
collapsed completely. An obvious difficulty with this is that Cantor’s theorem
suggests that type n+1 (being the “power set” of type n) should be intrinsically
larger than type n (and in some senses this is demonstrably true).

We first outline the reason that Quine believed that it might be possible to
collapse the type hierarchy. We recall from above: “We admit sorts of object
indexed by the natural numbers (this is purely a typographical convenience;
no actual reference to natural numbers is involved). Type 0 is inhabited by
“individuals” with no specified structure. Type 1 is inhabited by sets of type 0
objects, and in general type n+ 1 is inhabited by sets of type n objects.

The type system is enforced by the grammar of the language. Atomic sen-
tences are equations or membership statements, and they are only well-formed
if they take one of the forms xn = yn or xn ∈ yn+1.

The axioms of extensionality of TST take the form

An+1 = Bn+1 ↔ (∀xn.xn ∈ An+1 ↔ xn ∈ Bn+1);

there is a separate axiom for each n.
The axioms of comprehension of TST take the form (for any choice of a type

n, a formula φ, and a variable An+1 not free in φ)

(∃An+1.(∀xn.xn ∈ An+1 ↔ φ))

It is interesting to observe that the axioms of TST are precisely analogous
to those of naive set theory.”

For any formula φ, define φ+ as the formula obtained by raising every type
index on a variable in φ by one. Quine observes that any proof of φ can be
converted into a proof of φ+ by raising all type indices in the original proof.

19



Further, every object {xn | φ}n+1 that the theory permits us to define has a
precise analogue {xn+1 | φ+}n+2 in the next higher type; this can be iterated
to produce “copies” of any defined object in each higher type.

For example, the Frege definition of the natural numbers works in TST . The
number 32 can be defined as the (type 2) set of all (type 1) sets with three (type
0) elements. The number 33 can be defined as the (type 3) set of all (type 2) sets
with three (type 1) elements. The number 327 can be defined as the (type 27)
set of all (type 26) sets with three (type 25) elements. And so forth. Our logic
does not even permit us to say that these are a sequence of distinct objects; we
cannot ask the question as to whether they are equal or not.

Quine suggested, in effect, that we tentatively suppose that φ ≡ φ+ for all
φ; it is not just the case that if we can prove φ, we can prove φ+, but that
the truth values of these sentences are the same. It then becomes strongly
tempting to identify {xn | φ}n+1 with {xn+1 | φ+}n+2, since anything we can
say about these two objects is the same (and our new assumption implies that
we will assign the same truth values to corresponding assertions about these
two objects).

The theory NF which we obtain can be described briefly (but deceptively) as
being the first-order untyped theory with equality and membership having the
same axioms as TST but without the distinctions of type. If this is not read very
carefully, it may be seen as implying that we have adopted the comprehension
axioms of naive set theory,

(∃A.(∀x.x ∈ A↔ φ))

for each formula φ. But we have not. We have only adopted those axioms for
formulas φ which can be obtained from formulas of TST by dropping distinctions
of type between the variables (without introducing any identifications between
variables of different types). For example, there is no way that x 6∈ x can
be obtained by dropping distinctions of type from a formula of TST , without
identifying two variables of different type. Formulas of the untyped language
of set theory in which it is possible to assign a type to each variable (the same
type wherever it occurs) in such a way as to get a formula of TST are said
to be stratified . The axioms of NF are strong extensionality (no non-sets) and
stratified comprehension.

Though the set {x | x 6∈ x} is not provided by stratified comprehension, some
other sets which are not found in any variant of Zermelo set theory are provided.
For example, x = x is a stratified formula, and the universal set V = {x | x = x}
is provided by an instance of comprehension. Moreover, V ∈ V is true.

All mathematical constructions which can be carried out in TST can be
carried out in NF . For example, the Frege natural numbers can be constructed,
and so can the set N of Frege natural numbers. The Frege natural number 1,
for example, is the set of all one-element sets.
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6.2 The consistency problem for NF ; the known consis-

tent subsystems

No contradictions are known to follow from NF , but some uncomfortable conse-
quences do follow. The Axiom of Choice is known to fail in NF : Specker proved
in [35] that the universe cannot be well-ordered. (Since the universe cannot be
well-ordered, it follows that the “Axiom” of Infinity is a theorem of NF : if the
universe were finite, it could be well-ordered.) This might be thought to be
what one would expect on adopting such a dangerous comprehension scheme,
but this turns out not to be the problem. The problem is with extensionality.

Jensen showed in his paper [20] of 1969 that NFU , the version of New
Foundations in which extensionality is weakened to allow many non-sets (as
described above under naive set theory) is consistent, is consistent with Infinity
and Choice, and is also consistent with the negation of Infinity (which of course
implies Choice). NFU , which has the full stratified comprehension axiom of
NF with all its frighteningly big sets, is weaker in consistency strength than
Peano arithmetic; NFU + Infinity + Choice is of the same strength as TST
with Infinity and Choice or Mac Lane set theory.

Some other fragments of NF , obtained by weakening comprehension rather
than extensionality, are known to be consistent. NF3, the version of NF in
which one accepts only those instances of the axiom of comprehension which
can be typed using three types, was shown to be consistent by Grishin in his
paper [16], also of 1969. NFP , the version of NF in which one accepts only
instances of the axiom of comprehension which can be typed so as to be instances
of comprehension of predicative TST (described above under type theories)
was shown to be consistent by Marcel Crabbé in his paper [11] of 1983. He
also showed that the theory NFI in which one allows all instances of stratified
comprehension in which no variable of type higher than that assigned to the
set being defined, is consistent. NF3+Infinity has the same strength as second-
order arithmetic. So does NFI (which has just enough impredicativity to define
the natural numbers, and not enough for the Least Upper Bound Axiom). NFP
is equivalent to a weaker fragment of arithmetic, but does (unlike NFU ) prove
Infinity: this is the only application of the Specker proof of ¬AC to a provably
consistent theory. Either Union is true (in which case we readily get all of NF
and Specker’s proof of Infinity goes through) or Union is not true, in which case
we note that all finite sets have unions, so there must be an infinite set. NF3

has considerable interest for a surprising reason: it turns out that all infinite
models of TST3 (simple type theory with three types) satisfy the ambiguity
schema φ ≡ φ+ (of course this only makes sense for formulas with one or two
types) and this turns out to be enough to show that for any infinite model of
TST3 there is a model of NF3 with the same theory. NF4 is the same theory
as NF (see [16]), and we have no idea how to get a model of TST4 to satisfy
ambiguity.
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6.3 Mathematics in NFU + Infinity + Choice

Of these set theories, only NFU with Infinity, Choice and possibly further strong
axioms of infinity (of which more anon) is really mathematically serviceable.
We examine the construction of models of this theory and the way mathematics
works inside this theory. A source for this development is [18] (Rosser’s [32]
develops the foundations of mathematics in NF : it can adapted to NFU fairly
easily).

A model of NFU can be constructed as follows. Well-known results of model
theory allow the construction of a nonstandard model of ZFC (actually, a model
of Mac Lane set theory suffices) with an external automorphism j which moves
a rank Vα. We stipulate without loss of generality that j(α) < α. The universe
of our model of NFU will be Vα and the emembership relation will be defined
as x ∈NFU y ≡def j(x) ∈ y ∧ y ∈ Vj(α)+1 (where ∈ is the membership relation of
the nonstandard model). The proof that this is a model of NFU is not long,
but it is involved enough that we refer the reader elsewhere. The basic idea is
that the automorphism allows us to code the (apparent) power set Vα+1 of our
universe Vα into the “smaller” Vj(α)+1 which is included in our universe; the left
over objects in Vα −Vj(α)+1 become urelements. Note that Vα −Vj(α)+1 is most
of the domain of the model of NFU in a quite strong sense: almost all of the
universe is made up of urelements (note that each Vβ+1 is the power set of Vβ ,
and so is strictly larger in size, and not one but many stages intervene between
Vj(α)+1 (the collection of “sets”) and Vα (the “universe”)). This construction
is related to the construction used by Jensen, but is apparently first described
explicitly in [6] by Maurice Boffa.

In any model of NFU , a structure which looks just like one of these models
can be constructed in the isomorphism classes of well-founded extensional rela-
tions. The theory of isomorphism classes of well-founded extensional relations
with a top element looks like the theory of (an initial segment of) the usual
cumulative hierarchy, because every set in Zermelo-style set theory is uniquely
determined by the isomorphism type of the restriction of the membership rela-
tion to its transitive closure. The surprise is that we not only see a structure
which looks like an initial segment of the cumulative hierarchy: we also see an
external endomorphism of this structure which moves a rank (and therefore can-
not be a set), in terms of which we can replicate the model construction above
and get an interpretation of NFU of this kind inside NFU ! The endomorphism
is induced by the map T which sends the isomorphism type of a relation R to
the isomorphism type of Rι = {〈{x}, {y}〉 | xR y}. There is no reason to believe
that T is a function: it sends any relation R to a relation Rι which is one type
higher in terms of TST . It is demonstrable that T on the isomorphism types of
well-founded extensional relations is not a set function (we will not show this
here, but our discussion of the Burali-Forti paradox below should give a good
idea of the reasons for this). See [18] for the full discussion.

This suggests that the underlying world view of NFU , in spite of the presence
of the universal set, Frege natural numbers, and other large objects, may not
be that different from the world view of Zermelo-style set theory; we build
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models of NFU in a certain way in Zermelo-style set theory, and NFU itself
reflects this kind of construction internally. A further, surprising result is that
in models of NFU constructed from a nonstandard Vα with automorphism as
above, the membership relation on the nonstandard Vα is first-order definable
(in a very elaborate way) in terms of the relation ∈NFU; this is very surprising,
since it seems superficially as if all information about the extensions of the
urelements has been discarded in this construction. But this turns out not to
be the case (and this means that the urelements, which seem to have no internal
information, nonetheless have a great deal of structure in these models).

Models of NFU can have a “finite” (but externally infinite) universe if the
ordinal α in the construction is a nonstandard natural number. If α is infinite,
the model of NFU will satisfy Infinity. If the Axiom of Choice holds in the
model of Zermelo-style set theory, it will hold in the model of NFU .

Now we look at the mathematical universe according to NFU , rather than
looking at models of NFU from the outside.

The Frege construction of the natural numbers works perfectly in NFU . If
Infinity holds, there will be no last natural number and we can define the usual
set N of natural numbers just as we did above.

Any of the usual ordered pair constructions works in NFU . The usual Ku-
ratowski pair is inconvenient in NF or in NFU , because the pair is two types
higher than its projections in terms of TST . This means that functions and
relations are three types higher than the elements of their domains and ranges.
There is a type-level pair defined by Quine in [29] (type-level because it is the
same type as its projections) which is definable in NF and also on Vα for any
infinite ordinal α; this pair can be defined and used in NF and the fact that it
is definable on infinite Vα means that it can be assumed in NFU+Infinity that
there is a type-level ordered pair (the existence of such a pair also follows from
Infinity and Choice together). This would make the type displacement between
functions and relations and elements of their domains and ranges just one, the
same as the displacement between the types of sets and their elements. We
will assume that ordered pairs are of the same type as their projections in the
sequel, but we will not present the rather complicated definition of the Quine
pair.

Once pairs are defined, the definition of relations and functions proceeds
exactly as in the usual set theory. The definitions of integers and rational
numbers present no problem, and the Dedekind construction of the reals can
be carried out as usual. We will focus here on developing the solutions to
the paradoxes of Cantor and Burali-Forti in NFU , which give a good picture
of the odd character of this set theory, and also set things up nicely for a brief
discussion of natural strong axioms of infinity for NFU . It is important to realize
as we read the ways in which NFU evades the paradoxes that this evasion is
successful: NFU is known to be consistent if the usual set theory is consistent,
and close examination of the models of NFU shows exactly why these apparent
dodges work.

Two sets are said to be of the same cardinality just in case there is a bi-
jection between them. This is standard. But we then proceed to define |A|
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(the cardinality of a set A) as the set of all sets which are the same size as A,
realizing the definition intended by Frege and Russell, and apparently intended
by Cantor as well. Notice that |A| is one type higher than A. The Frege natural
numbers are the same objects as the finite cardinal numbers.

The Cantor theorem of the usual set theory asserts that |A| < |P(A)|. This is
clearly not true in NFU , since |V | is the cardinality of the universe and |P(V )|
is the cardinality of the set of sets, and in fact |V | >> |P(V )| in all known
models of NFU (there are many intervening cardinals in all such models). But
|A| < |P(A)| does not make sense in TST : it is ill-typed. The correct theorem
in TST , which is inherited by NFU , is |P1(A)| < |P(A)|, where P1(A) is the
set of one-element subsets of A, which is at the same type as the power set of A.
So we have |P1(V )| < |P(V )|: there are more sets than there are singleton sets.
The apparent bijection x 7→ {x} between P1(V ) and V cannot be a set (and
there is no reason to expect it to be a set, since it has an unstratified definition).

A set which satisfies |A| = |P1(A)| is called a cantorian set, since it satis-
fies the usual form of Cantor’s theorem. A set A which satisfies the stronger
condition that the restriction of the singleton map to A is a set is said to be
strongly cantorian (s.c.). Strongly cantorian sets are important because it is
not necessary to assign a relative type to a variable known to be restricted to
a strongly cantorian set, as it is possible to use the restriction of the singleton
map and its inverse to freely adjust the type of any such variable for purposes
of stratification. The strongly cantorian sets are can be thought of as analogues
of the small sets of the usual set theory.

Ordinal numbers are defined as equivalence classes of well-orderings under
similarity. There is a natural order on ordinal numbers, and in NFU as in
the usual set theory it turns out to be a well-ordering – and, as in naive set
theory, a set! Since the natural order on the ordinal numbers is a set, it has an
order type Ω which is itself one of the ordinal numbers. Now in the usual set
theory we prove that the order type of the restriction of the natural order on the
ordinals to the ordinals less than α is the ordinal α itself; however, this is an ill-
typed statement in TST , where, assuming a type level ordered pair, the second
occurrence of α is two types higher than the first (it would be four types higher
if the Kuratowski ordered pair were used). Since the ordinals are isomorphism
types of relations, we can define the operation T on them as above. “The order
type of the restriction of the natural order on the ordinals to the ordinals less
than α is the ordinal T 2(α)” is an assertion which makes sense in TST and is
in fact true in TST and so in NFU . We thus find that the order type of the
restriction of the natural order on the ordinals to the ordinals less than Ω is
T 2(Ω), whence we find that T 2(Ω) (as the order type of a proper initial segment
of the ordinals) is strictly less than Ω (which is the order type of all the ordinals).
Once again, the fact that the singleton map is not a function eliminates the
“intuitively obvious” similarity between these orders. This also shows that T
is not a function. T is an order endomorphism of the ordinals, though, whence
we have Ω > T 2(Ω) > T 4(Ω) . . ., which may be vaguely disturbing, though this
“sequence” is not a set. A perhaps useful comment is that in the models of NFU
described above, the action of T on ordinals exactly parallels the action of j on
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order types of well-orderings (j does not send NFU ordinals to ordinals, exactly,
so this needs to be phrased carefully): the “descending sequence” already has
an analogue in the sequence α > j(α) > j2(α) . . . in the original nonstandard
model. Some have asserted that this phenomenon (that the ordinals in any
model of NFU are not externally well-ordered) can be phrased as “NFU has no
standard model”. We reserve judgement on this – we do note that the theorem
“the ordinals in any (set!) model of NFU are not well-ordered” is a theorem of
NFU itself; note that NFU does not see the universe as a model of NFU (even
though it is a set) because the membership relation is not a set relation (if it
were, the singleton map certainly would be).

NFU + Infinity + Choice is a relatively weak theory: like Zermelo set the-
ory it does not prove even that ℵω exists. As is the case with Zermelo set
theory, natural extensions of this theory make it much stronger. We give just
one example. The Axiom of Cantorian Sets is the deceptively simple state-
ment (to which there are no evident counterexamples) that “every cantorian
set is strongly cantorian”. NFU + Infinity + Choice + Cantorian Sets is a
considerably stronger theory than NFU + Infinity + Choice: in its theory of
isomorphism types of well-founded extensional relations with top element, the
cantorian types with the obvious “membership” relation satisfy the axioms of
ZFC + “there is an n-Mahlo cardinal” for each concrete n. There is no mathe-
matical need for the devious interpretation: this theory proves the existence of
n-Mahlo cardinals and supports all mathematical constructions at that level of
consistency strength in its own terms without any need to refer to the theory
of well-founded extensional relations. More elaborate statements about such
properties as “cantorian” and “strongly cantorian” (applied to order types as
well as cardinality) yield even stronger axioms of infinity.

Our basic claim about NFU + Infinity + Choice (and its extensions) is that
it is a mathematically serviceable alternative set theory with its own intrinsic
motivation (although we have used Zermelo style set theory to prove its consis-
tency here, the entire development can be carried out in terms of TST alone:
one can use TST as meta-theory, show in TST that consistency of TST implies
consistency of NFU , and use this result to amend one’s meta-theory to NFU ,
thus abandoning the distinctions between types). We do not claim that it is
better than ZFC , but we do claim that it is adequate, and that it is important
to know that adequate alternatives exist; we do claim that it is useful to know
that there are different ways to found mathematics, as we have encountered the
absurd assertion that “mathematics is whatever is formalized in ZFC”.

6.4 Critique of NFU

Like Zermelo set theory, NFU has advantages and disadvantages. An advantage,
which corresponds to one of the few clear disadvantages of Zermelo set theory,
is that it is possible to define natural numbers, cardinal numbers, and ordinal
numbers in the natural way intended by Frege, Russell, and Whitehead.

Many but not all of the purported disadvantages of NFU as a working
foundation for mathematics reduce to complaints by mathematicians used to
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working in ZFC that “this is not what we are used to”. The fact that there
are fewer singletons than objects (in spite of an obvious external one to one
correspondence) takes getting used to. In otherwise familiar constructions, one
sometimes has to make technical use of the singleton map or T operations to
adjust types to get stratification. This author can testify that it is perfectly
possible to develop good intuition for NFU and work effectively with stratified
comprehension; part of this but not all of it is a good familiarity with how things
are done in TST , as one also has to develop a feel for how to use principles that
subvert stratification.

As Sol Feferman has pointed out, and as is evident in my treatment in [18],
one place where the treatments in NFU (at least those given so far) are clearly
quite involved are situations in which one needs to work with indexed families
of objects. Our proof of König’s Lemma of set theory in [18] is a good example
of how complicated this kind of thing can get in NFU . We have a notion that
the use of sets of “Quine atoms” (self-singletons) as index sets (necessarily for
s.c. sets) might relieve this difficulty, but we haven’t proved this in practice,
and problems would remain for the noncantorian situation.

The fact that “NFU has no standard models” (the ordinals are not well-
ordered in any set model of NFU ) is a criticism of NFU which has merit. We
observe, though, that there are other set theories in which nonstandard objects
are deliberately provided (we will review some of these below), and some of
the applications of those set theories to “nonstandard analysis” might be dupli-
cated in suitable versions of NFU . We also observe that strong principles which
minimize the nonstandard behavior of the ordinals turn out to give surprisingly
strong axioms of infinity in NFU ; the nonstandard structure of the ordinals
allows insight into phenomena associated with large cardinals.

Some have thought that the fact that NFU combines a universal set and
other big structures with mathematical fluency in treating these structures
might make it a suitable medium for category theory. Although we have some
inclination to be partial to this class of set theories, we note that there are
strong counterarguments to this view. It is true that there are big categories,
such as the category of all sets (as objects) and functions (as the morphisms
between them), the category of all topological spaces and homeomorphism, and
even the category of all categories and functors. However, the category of all
sets and functions, for example, while it is a set, is not “cartesian closed” (a
technical property which this category is expected to have): see [26]. Moreover,
if one restricts to the s.c. sets and functions, one obtains a cartesian closed
category, which is much more closely analogous to the category of all sets and
functions over ZFC – and shares with it the disadvantage of being a proper
class! Contemplation of the models only confirms the impression that the cor-
rect analogue of the proper class category of sets and functions in ZFC is the
proper class category of s.c. sets and functions in NFU ! There may be some
applications for the big set categories in NFU , but they are not likely to prove
to be as useful as some have optimistically suggested. See [14] for an extensive
discussion.

An important point is that there is a relativity of viewpoint here: the NFU
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world can be understood to be a nonstandard initial segment of the world of
ZFC (which could be arranged to include its entire standard part!) with an
automorphism and the ZFC world (or an initial segment of it) can be inter-
preted in NFU as the theory of isomorphism classes of well-founded extensional
relations with top (often restricted to its strongly cantorian part); these two
theories are mutually interpretable, so the corresponding views of the world
admit mutual translation.

ZFC might be viewed as motivated by a generalization of the theory of sets
in extension (as generalizations of the notion of finite set, replacing the finite
with the transfinite and the rejected infinite with the rejected Absolute Infinite
of Cantor) while the motivation of NFU can be seen as a correction of the
theory of sets as intensions (that is, as determined by predicates) which led
to the disaster of naive set theory. Nino Cocchiarella has noted in [10] that
Frege’s theory of concepts could be saved if one could motivate a restriction
to stratified concepts (the abandonment of strong extensionality is merely a
return to common sense). But the impression of a fundamental contrast should
be tempered by the observation that the two theories nonetheless seem to be
looking at the same universe in different ways!

7 Positive set theories

7.1 Topological motivation of positive set theory

We will not attempt an exhaustive survey of positive set theory; our aim here is
to motivate and exhibit the axioms of the strongest system of this kind familiar
to us, which is the third of the systems of classical set theory which we regard
as genuinely mathematically serviceable (the other two being ZFC and suitable
strong extensions of NFU + Infinity + Choice).

A positive formula is a formula which belongs to the smallest class of formu-
las containing a false statement ⊥, all atomic membership and equality formulas
and closed under the formation of conjunctions, disjunctions, universal and ex-
istential quantifications. A generalized positive formula is obtained if we allow
bounded universal and existential quantifications (the additional strength comes
from allowing (∀x ∈ A | φ) ≡ (∀x.x ∈ A → φ); bounded existential quantifica-
tion is positive in any case).

Positive comprehension is motivated superficially by an attack on one of
the elements of Russell’s paradox (the negation): a positive set theory will be
expected to support the axiom of extensionality (as usual) and the axiom of
(generalized) positive comprehension: for any (generalized) positive formula φ,
{x | φ} exists.

We mention that we are aware that positive comprehension with the addi-
tional generalization of positive formulas allowing one to include set abstracts
{x | φ} (with φ generalized positive) in generalized positive formulas is consis-
tent, but turns out not to be consistent with extensionality. We are not very
familiar with this theory, so have no additional comments to make about it;
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do notice that the translations of formulas with set abstracts in them into first
order logic without abstracts are definitely not positive in our more restricted
sense, and so one may expect some kind of trouble!

The motivation for the kinds of positive set theory we are familiar with is
topological . We are to understand the sets as closed sets under some topol-
ogy. Finite unions and intersections of closed sets are closed; this supports the
inclusion of {x | φ ∨ ψ} and {x | φ ∧ ψ} as sets if {x | φ} and {x | ψ} are
sets. Arbitrary intersections of closed sets are closed: this supports our adop-
tion of even bounded universal quantification (if each {x | φ(y)} is a set, then
{x | (∀y.φ(y))} is the intersection of all of these sets, and so should be closed,
and {x ∈ A | (∀y.φ(y))} is also an intersection of closed sets and so should be
closed. The motivation for permitting {x | (∃y.φ(y))} when each {x | φ(y)}
exists is more subtle, since infinite unions do not as a rule preserve closedness:
the idea is that the set of pairs (x, y) such that φ(x, y) is closed, and the topol-
ogy is such that the projection of a closed set is closed. Compactness of the
topology suffices. Moreover, we now need to be aware that formulas with several
parameters need to be considered in terms of a product topology.

An additional very powerful principle should be expected to hold in a topo-
logical model: for any class C whatsoever (any collection of sets), the intersec-
tion of all sets which include C as a subclass should be a set. Every class has a
set closure.

We attempt the construction of a model of such a topological theory. To
bring out an analogy with Mac Lane set theory and NF , we initially present a
model built by collapsing TST in yet another manner.

The model of TST that we use contains one type 0 object u. Note that this
means that each type is finite. Objects of each type are construed as better
and better approximations to the untyped objects of the final set theory. u

approximates any set. The type n+ 1 approximant to any set A is intended to
be the set of type n approximants of the elements of A.

This means that we should be able to specify when a type n + 2 set An+2

refines a type n+ 1 set An+1: each (type n+ 1) element of An+2 should refine
a (type n) element of An+1, and each element of An+1 should be refined by one
or more elements of An+2. Along with the information that the type 0 object u
refines both of the elements of type 1, this gives a complete recursive definition
of the notion of refinement of a type n set by a type n+ 1 set. Each type n+ 1
set refines a unique type n set but may be refined by many type n+2 sets. (The
“hereditarily finite” sets without u in their transitive closure are refined by just
one precisely analogous set at the next higher level). Define a general relation
x ∼ y on all elements of the model of set theory as holding when x = y (if they
are of the same type) or if there is a chain of refinements leading from the one
of x, y of lower type to the one of higher type.

The objects of our first model of positive set theory are sequences sn with
each sn a type n set and with sn+1 refining sn for each n. We say that s ∈ t

when sn ∈ tn+1 for all n. It is straightforward to establish that if sn ∈ tn+1 or
sn = tn is false, then sk ∈ tk+1 or (respectively) sk = tk is false for all k > n.
More generally, if sm ∼ tn is false, then sm+k ∼ tn+k is false for all k ≥ 0.
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Formulas in the language of the typed theory with ∈ and ∼ have a mono-
tonicity property: if φ is a generalized positive formula and one of its typed
versions is false, then any version of the same formula obtained by raising types
and refining the values of free variables in the formula will continue to be false.
It is not hard to see why this will fail to work if negation is allowed.

It is also not too hard to show that if all typed versions of a generalized
positive formula φ in the language of the intended model (with sequences s
appearing as values of free variables replaced by their values at the appropriate
types) are true, then the original formula φ is true in the intended model. The
one difficulty comes in with existential quantification: the fact that one has a
witness to (∃x.φ(x)) in each typed version does not immediately give a sequence
witnessing this in the intended model. The tree property of ω helps here: only
finitely many approximants to sets exist at each level, so one can at each level
choose an approximant refinements of which are used at infinitely many higher
levels as witnesses to (∃x.φ(x)), then restrict attention to refinements of that
approximant; in this way one gets not an arbitrary sequence of witnesses at
various types but a “convergent” sequence (an element of the intended model).

One then shows that any generalized positive formula φ(x) has an extension
{x | φ(x)} by considering the sets of witnesses to φ(x) in each type n; these sets
themselves can be used to construct a convergent sequence (with the proviso
that some apparent elements found at any given stage may need to be discarded;
one defines sn+1 as the set of those type n approximants which not only witness
φ(x) at the current type n but have refinements which witness φ(x) at each
subsequent type. The sequence of sets s obtained will be an element of the
intended model and have the intended extension.

Finally, for any class of sequences (elements of the intended model) C, there
is a smallest set which contains all elements of C: let cn+1 be the set of terms
sn of sequences s belonging to C at each type n to construct a sequence c which
will have the desired property.

This theory can be made stronger by indicating how to pass to transfinite
typed approximations. The type α+1 approximation to a set will always be the
set of type α approximations; if λ is a limit ordinal, the type λ approximation
will be the sequence {sβ}β<λ of approximants to the set at earlier levels (so our
“intended model” above is the set of type ω approximations in a larger model).

Everything above will work at any limit stage except the treatment of the
existential quantifier. The existential quantifier argument will work if the ordinal
stage at which the model is being constructed is a weakly compact cardinal. This
is a moderately strong large cardinal property (for an uncountable cardinal): it
implies, for example, the existence of proper classes of inaccessibles and of n-
Mahlo cardinals for each n.

So for each weakly compact cardinal κ (including κ = ω) the approximants
of level κ in the transfinite type theory just outlined make up a model of set
theory with extensionality, generalized positive comprehension, and the closure
property. We will refer to this model as the “κ-hyperuniverse”.
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7.2 The system GPK
+

∞
of Olivier Esser

We now present an axiomatic theory which has the κ-hyperuniverses with κ > ω

as (some of its) models. This is a first-order theory with equality and member-
ship as primitive relations. This system is called GPK+

∞
and is described by

Olivier Esser in [13].

Extensionality: Sets with the same elements are the same.

Generalized Positive Comprehension: For any generalized positive formula
φ, {x | φ} exists. (Notice that since we view the false formula ⊥ as positive
we need no special axiom asserting the existence of the empty set).

Closure: For any formula φ(x), there is a set C such that x ∈ C ≡ (∀y.(∀z.φ(z) →
z ∈ y) → x ∈ y); C is the intersection of all sets which include all objects
which satisfy φ: C is called the closure of the class {x | φ(x)}.

Infinity: The closure of the von Neumann ordinals is not an element of itself.
(This excludes the ω-hyperuniverse, in which the closure of the class of
von Neumann ordinals has itself as an additional member).

As one might expect, some of the basic concepts of this set theory are topo-
logical (sets being the closed classes of the topology on the universe).

This set theory interprets ZF . This is shown by demonstrating first that the
discrete sets (and more particularly the (closed) sets of isolated points in the
topology) satisfy an analogue of Replacement (a definable function (defined by
a formula which need not be positive) with a discrete domain is a set), and so an
analogue of separation, then by showing that well-founded sets are isolated in
the topology and the class of well-founded sets is closed under the constructions
of ZF .

Not only ZF but also Kelley-Morse class theory can be interpreted; any de-
finable class of well-founded sets has a closure whose well-founded members will
be exactly the desired members (it will as a rule have other, non-well-founded
members). Quantification over these “classes” defines sets just as easily as quan-
tification over mere sets in this context; so we get an impredicative class theory.
Further, one can prove internally to this theory that the “proper class ordinal”
in the interpreted KM has the tree property, and so is in effect a weakly com-
pact cardinal; this shows that this theory has considerable consistency strength
(for example, its version of ZF proves that there is a proper class of inaccessible
cardinals, a proper class of n-Mahlos for each n, and so forth): the use of large
cardinals in the outlined model construction above was essential.

The Axiom of Choice in any global form is inconsistent with this theory,
but it is consistent for all well-founded sets to be well-orderable (in fact, this
will be true in the models described above if the construction is carried out
in an environment in which Choice is true). This is sufficient for the usual
mathematical applications.

Since ZF is entirely immersed in this theory, it is clearly serviceable for the
usual classical applications. The Frege natural numbers are not definable in this

30



theory (except for 0 and 1); it is better to work with the finite ordinals. The
ability to prove strong results about large cardinals using the properties of the
proper class ordinal suggests that the superstructure of large sets can be used
for mathematical purposes as well. Familiarity with techniques of topology of
κ-compact spaces would be useful for understanding what can be done with the
big sets in this theory.

With the negation of the Axiom of Infinity, we get the theory of the ω-
hyperuniverse, which is equiconsistent with second-order arithmetic, and so ac-
tually has a fair amount of mathematical strength. In this theory, the class
of natural numbers (considered as finite ordinals) is not closed and acquires
an extra element “at infinity” (which happens to be the closure of the class of
natural numbers itself). Individual real numbers can be coded (using the usual
Dedekind construction, actually) but the theory of sets of real numbers will
begin to look quite different.

7.3 Critique of positive set theory

One obvious criticism is that this theory is extremely strong, compared with the
other systems given here. This could be a good thing or a bad thing, depending
on one’s attitude. If one is worried about the consistency of a weakly compact,
the level of consistency strength here is certainly a problem (though the theory
of the ω-hyperuniverse will stay around in any case). On the other hand, the
fact that the topological motivation for set theory seems to work and yields a
higher level of consistency strength than one might expect (“weakly compact”
infinity following from merely uncountable infinity) might be taken as evidence
that these are very powerful ideas.

The mathematical constructions that are readily accessible to this author
are simply carried over from ZF or ZFC ; the well-founded sets are considered
within the world of positive set theory, and we find that they have exactly the
properties we expect them to have from the usual viewpoint. It is rather nice
that we get (fuzzier) objects in our set theory suitable to represent all of the
usual proper classes; it is less clear what we can do with the other large objects
than it is in NFU . A topologist might find this system quite interesting; in any
event, topological expertise seems required to evaluate what can be done with
the extra machinery in this system.

We briefly review the paradoxes: the Russell paradox doesn’t work because
x 6∈ x is not a positive formula; notice that {x | x ∈ x} exists! The Cantor
paradox does not work because the proof of the Cantor theorem relies on an
instance of comprehension which is not positive. P(V ) does exist and is equal
to V . The ordinals are defined by a non-positive condition, and do not make up
a set, but it is interesting to note that the closure On of the class On of ordinals
is equal to On ∪ {On}; the closure has itself as its only unexpected element.
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8 Logically motivated variations

In the preceding set theories, the properties of the usual objects of mathematics
accord closely with their properties as “intuitively” understood by most math-
ematicians (or lay people). (Strictly speaking, this is not quite true in NFU
+ Infinity without the additional assumption of Rosser’s Axiom of Counting,
but the latter axiom (“N is strongly cantorian”) is almost always assumed in
practice).

In the two classes of system discussed in this section, logical considerations
lead to the construction of theories in which “familiar” parts of the world look
quite different. Constructive mathematicians do not see the same continuum
that we do, and if they are willing to venture into the higher reaches of set
theory, they find a different world there, too. The proponents of nonstandard
analysis also find it useful to look at a different continuum (and even different
natural numbers) though they do see the usual continuum and natural numbers
embedded therein.

8.1 Constructive set theory

There are a number of attempts at constructive (intuitionistic) theories of types
and set theories. We will describe a few systems here, quite briefly as we are
not expert in constructive mathematics.

An intuitionistic typed theory of sets is readily obtained by simply adopting
the intuitionistic versions of the axioms of TST as axioms. An Axiom of Infinity
would be wanted to ensure that an interpretation of Heyting arithmetic could
be embedded in the theory; it might be simplest to provide type 0 with the
primitives of HA (just as the earliest versions of TST had the primitives of
classical arithmetic provided for type 0). We believe that this would give a
quite comfortable environment for doing constructive mathematics.

Daniel Dzierzgowski has gone so far as to study an intuitionistic version of
NF constructed in the same way; all that we can usefully report here is that it
is not clear that the resulting theory INF is as strong as NF (in particular, it
is unclear whether INF interprets Heyting Arithmetic, because Specker’s proof
of Infinity in NF does not seem to go through in any useful way) but the
consistency problem for INF remains open in spite of the apparent weakness of
the theory.

A more ambitious theory is IZF (intuitionistic ZF ). An interesting feature
of the development of IZF is that one must be very careful in one’s choice of
axioms: the usual classical forms of the axioms allow a constructive proof of the
Law of Excluded Middle, and so simply reduce to classical ZF .

A set of axioms which seems to yield a nontrivial system of constructive
mathematics is the following:

Extensionality: in the usual ZF form.

Pairing, Union, Power Set, Infinity: in the usual ZF form.
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Collection: We are not sure why this is often preferred in constructive set
theory, as it seems to us less constructive than replacement? But we have
heard it said that Replacement is constructively quite weak.

∈-Induction: The induction on membership form is preferred for a highly prac-
tical reason: more usual formulations of Foundation immediately imply
the Axiom of Excluded Middle!

See [1] for further information about this theory.
As is often the case in constructive mathematics, very simple notions of

classical mathematics (such as the notion of an ordinal) become much more
complicated in the constructive environment. Being inexpert, we will not in-
volve ourselves further in this. It is worth noting that IZF , like many but not
all constructive systems, admits a double negation interpretation of the corre-
sponding classical theory ZF ; we might think of IZF as a weakened version of
ZF from the classical standpoint, but in its own terms it is the theory of a larger,
more complex realm in which a copy of the classical universe of set theory is
embedded.

The theories I have described so far are criticized by some constructive math-
ematicians for allowing an unrestricted power set operation. A weaker system
CZF has been proposed which does not have this operation (and which has the
same level of strength as the weak set theory KPU without Power Set described
earlier).

CZF omits Power Set. It replaces Foundation with ∈-Induction for the same
reasons as above. The axioms of Extensionality, Pairing, and Union are as in
ordinary set theory. The axiom of Separation is restricted to bounded (∆0)
formulas as in Mac Lane set theory or KPU .

The Collection axiom is replaced by two weaker axioms.
The Strong Collection axiom scheme asserts that if for every x ∈ A there

is y such that φ(x, y), then there is a set B such that for every x ∈ A there
is y ∈ B such that φ(x, y) (as in the usual scheme) but also for every y ∈ B

there is x ∈ A such that φ(x, y) (B doesn’t contain any redundant elements).
The additional restriction is useful because of the weaker form of the Separation
Axiom.

The Subset Collection scheme can be regarded as containing a very weak
form of Power Set. It asserts, for each formula φ(x, y, z) that for every A and
B, there is a set C such that for each z such that (∀x ∈ A.(∃y ∈ B.φ(x, y, z)))
there is Rz ∈ C such that for every x ∈ A there is y ∈ Rz such that φ(x, y, z) and
for every y ∈ Rz there is x ∈ A such that φ(x, y, z) (this is the same restriction
as in the Strong Collection axiom; notice that not only are images under the
relation constructed, but the images are further collected into a set).

The Subset Collection scheme is powerful enough to allow the construction
of the set of all functions from a set A to a set B as a set (which suggests that
the classical version of this theory is as strong as ZF , since the existence of the
set of functions from A to {0, 1} is classically as strong as the existence of the
power set of A, and strong collection should allow the proof of strong separation
in a classical environment).
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This theory is known to be at the same level of consistency strength as the
classical set theory KPU . It admits an interpretation in Martin-Löf constructive
type theory (as IZF does not).

See [2] for further information about this theory.

8.2 Set theory for nonstandard analysis

Nonstandard analysis originated with Abraham Robinson ([31]), who noticed
that the use of nonstandard models of the continuum would allow one to make
sense of the infinitesimal numbers of Leibniz, and so obtain an elegant formula-
tion of the calculus with fewer alternations of quantifiers.

Later exponents of nonstandard analysis observed that the constant reference
to the model theory made the exposition less elementary than it could be; they
had the idea of working in a set theory which was inherently “nonstandard”.

We present a system of this kind, a version of the set theory IST of Nelson
([27]). The primitives of the theory are equality, membership, and a primitive
notion of standardness . The axioms follow.

Extensionality, Pairing, Union, Power Set, Foundation, Choice: As in
our presentation of ZFC above.

Separation, Replacement: As in our presentation of ZFC above, except that
the standardness predicate cannot appear in the formula φ.

Definition: For any formula φ, the formula φst is obtained by replacing each
quantifier over the universe with a quantifier over all standard objects
(and each quantifier bounded in a set with a quantifier restricted to the
standard elements of that set).

Idealization: There is a finite set which contains all standard sets.

Transfer: For each formula φ(x) not mentioning the standardness predicate
and containing no parameters (free variables other than x) except standard
sets, (∀x.φ(x)) ≡ (∀x.standard(x) → φ(x)).

Standardization: For any formula φ(x) and standard setA, there is a standard
set B whose standard elements are exactly the standard elements x of A
satisfying φ(x).

Our form of Idealization is simpler than the usual version but has the same
effect.

Transfer immediately implies that any uniquely definable object (defined
without reference to standardness) is in fact a standard object. So the empty set
is standard, ω is standard, and so forth. But it is not the case that all elements
of standard objects are standard. For consider the cardinality of a finite set
containing all standard objects; this is clearly greater that any standard natural
number (usual element of ω) yet it is equally clearly an element of ω. It turns
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out to be provable that every set all of whose elements are standard is a standard
finite set.

Relative consistency of this theory with the usual set theory ZFC is estab-
lished via familiar results of model theory. Working in this theory makes it
possible to use the techniques of nonstandard analysis in a “elementary” way,
without ever appealing explicitly to the properties of nonstandard models.

9 Small set theories

It is commonly noted that set theory produces far more superstructure than
is needed to support classical mathematics. In this section, we describe two
miniature theories which purport to provide enough foundations without nearly
as much superstructure. Our “pocket set theory” (motivated by a suggestion of
Rudy Rucker) is just small; Vopenka’s alternative set theory is also “nonstan-
dard” in its approach.

9.1 Pocket set theory

This theory is a proposal of ours, which elaborates on a suggestion of Rudy
Rucker. We (and many others) have observed that of all the orders of infinity
in Cantor’s paradise, only two actually occur in classical mathematical practice
outside set theory: these are ℵ0 and c, the infinity of the natural numbers and
the infinity of the continuum. Pocket set theory is a theory motivated by the
idea that these are the only infinities (Vopenka’s alternative set theory also has
this property, by the way).

The objects of pocket set theory are classes. A class is said to be a set iff it
has elements (as in the usual class theories over ZFC ).

The ordered pair is defined using the usual Kuratowski definition, but with-
out assuming that there are any ordered pairs. The notions of relation, function,
bijection, and equinumerousness are defined as usual (still without any assump-
tions as to the existence of any ordered pairs). An infinite set is defined as a set
which is equinumerous with one of its proper subsets. A proper class is defined
as a class which is not a set.

The axioms of pocket set theory are

Extensionality: Classes with the same elements are equal.

Class Comprehension: For any formula φ, there is a class {x | φ(x)} which
contains all sets x such that φ(x). (note that this is the class compre-
hension axiom of Kelley-Morse set theory, without any restrictions on
quantifiers in φ).

Infinite Sets: There is an infinite set; all infinite sets are the same size.

Proper Classes: All proper classes are the same size, and any class the same
size as a proper class is proper.

35



We cannot resist proving the main results (because the proofs are funny).

Empty Set: If the empty set were a proper class, then all proper classes would
be empty. In particular, the Russell class would be empty. Let I be an
infinite set. {I} would be a set, because it is not empty, and {I, {I}}
would be a set (again because it is not empty). But {I, {I}} belongs
to the Russell class (as a set with two elements, it cannot be either the
Dedekind infinite I or the singleton {I}. So ∅ is a set.

Singleton: If any singleton {x} is a proper class, then all singletons are proper
classes, and the Russell class is a singleton. {I, ∅} is a set (both elements
are sets, and the class is not a singleton) which cannot be a member of
itself, and so is in the Russell class. But so is ∅ in the Russell class; so the
Russell class is not a singleton, and all singletons are sets.

Unordered Pair: The Russell class is not a pair, because it has distinct ele-
ments ∅, {∅}, {{∅}}.

Relations: All Kuratowski ordered pairs exist, so all definable relations are
realized as set relations.

Cantor’s theorem (no set is the same size as the class of its subsets) and the
Schröder-Bernstein theorem (if there are injections from each of two classes into
the other, there is a bijection between them) have their standard proofs.

The Russell class can be shown to be the same size as the universe using
Schröder-Bernstein: the injection from R into V is obvious, and V can be
embedded into R using the map x 7→ {{x}, ∅} (clearly no set {{x}, ∅} belongs
to itself). So a class is proper iff it is the same size as the universe (limitation
of size).

Define the von Neumann ordinals as classes which are strictly well-ordered
by membership. Each finite ordinal can be proved to be a set (because it is
smaller than its successor and is a subclass of the Russell class). The class of
all ordinals is not a set (but is the last ordinal), for the usual reasons, and so is
the same size as the universe, and so the universe can be well-ordered.

There is an infinite ordinal, because there is an ordinal which can be placed
in one-to-one correspondence with one’s favorite infinite set I . Since there is an
infinite ordinal, every finite ordinal is a set and the first infinite ordinal ω is a
set. It follows that all infinite sets are countably infinite.

The power set of an infinite set I is not the same size as I by Cantor’s
theorem, is certainly infinite, and so cannot be a set, and so must be the same
size as the universe. It follows by usual considerations that the universe is the
same size as P(ω) or as R (the set of real numbers, defined in any of the usual
ways), and its “cardinal” is c. Further, the first uncountable ordinal ω1 is the
cardinality of the universe, so the Continuum Hypothesis holds.

It is well-known that coding tricks allow one to do classical mathematics
without ever going above cardinality c: for example, the class of all functions
from the reals to the reals, is too large to be even a proper class here, but
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the class of continuous functions is of cardinality c. An individual continuous
function f might seem to be a proper class, but it can be coded as a hereditarily
countable set by (for example) letting the countable set of pairs of rationals
〈p, q〉 such that p < f(q) code the function f . In fact, it is claimed that most of
classical mathematics can be carried out using just natural numbers and sets of
natural numbers (second-order arithmetic) or in even weaker systems, so pocket
set theory (having the strength of third order arithmetic) can be thought to be
rather generous.

We do remark that it is not necessarily the case that the hypothetical ad-
vocate of pocket set theory thinks that the universe is small; he or she might
instead think that the continuum is very large. . .

9.2 Vopenka’s alternative set theory

Petr Vopenka has presented the following alternative set theory (e.g., in [37]).
The theory has sets and classes. The following axioms hold of sets.

Extensionality: Sets with the same elements are the same.

Empty set: ∅ exists.

Successor: For any sets x and y, x ∪ {y} exists.

Induction: Every formula φ expressed in the language of sets only (all param-
eters are sets and all quantifiers are restricted to sets) and true of ∅ and
true of x ∪ {y} if it is true of x is true of all sets.

Regularity: Every set has an element disjoint from it.

The theory of sets appears to be the theory of Vω (the hereditarily finite
sets) in the usual set theory!

We now pass to consideration of classes.

Existence of classes: If φ(x) is any formula, then the class φ(x) of all sets x
such that φ(x) exists. (The set x is identified with the class of elements
of x.) Note that Kuratowski pairs of sets are sets, and so we can define
(class) relations and functions on the universe of sets much as usual.

Extensionality for classes: Classes with the same elements are equal.

Definition: A semiset is a subclass of a set. A proper class is a class which is
not a set. A proper semiset is a subclass of a set which is not a set.

Axiom of proper semisets: There is a proper semiset.

A proper semiset is a signal that the set which contains it is nonstandard
(recall that all sets seem to be hereditarily finite!)

Definition: A set is finite if it has no proper subclass.
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A finite set has standard size (the use of “finite” here could be confusing:
all sets are nonstandard finite here, after all).

Definition: An ordering of type ω is a class well-ordering which is infinite and
all of whose initial segments are finite. A class is countable if it has an
ordering of type ω.

An ordering of type ω has the same length as the standard natural numbers.
We can prove that there is such an ordering: consider the order on the finite (i.e.,
standard finite) von Neumann ordinals. There must be infinite von Neumann
ordinals because there is a set theoretically definable bijection between the von
Neumann ordinals and the whole universe of sets: any proper semiset can be
converted to a proper semiset of a set of von Neumann ordinals.

Prolongation axiom: Each countable function F can be extended to a set
function.

The Prolongation Axiom has a role similar to that of the Standardization
Axiom in the “nonstandard” set theory IST above.

Vopenka considers representations of superclasses of classes using relations
on sets. A class relation R on a class A is said to code the superclass of inverse
images of elements of A under R. A class relation R on a class A is said to exten-
sionally code this superclass if distinct elements of A have distinct preimages.
He “tidies up” the theory of such codings by adopting the

Axiom of extensional coding: Every collection of classes which is codable
is extensionally codable.

It is worth noting that this can be phrased in a way which makes no reference
to superclasses: for any class relation R, there is a class relation R′ such that
for any x there is x′ with preimage under R′ equal to the preimage of x under
R, and distinct elements of the field of R′ have distinct preimages.

His notion of coding is more general: we can further code collections of
classes by taking a pair 〈K,R〉 where K is a subclass of the field of R; clearly
any collection of classes codable in this way can be extensionally coded by using
the axiom in the form I give.

The final axiom is

Axiom of cardinalities: If two classes are uncountable, they are the same
size.

This implies (as in pocket set theory) that there are two infinite cardinalities,
which can be thought of as ℵ0 and c, though in this context their behavior is
less familiar than it is in pocket set theory. For example, the set of all natural
numbers (as Vopenka defines it) is of cardinality c, while there is an initial
segment of the natural numbers (the finite natural numbers) which has the
expected cardinality ω.
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One gets the axiom of choice from the axioms of cardinalities and extensional
codings; the details are technical. One might think that this would go as in
pocket set theory: the order type of all the ordinals is not a set and so has
the same cardinality as the universe. But this doesn’t work here, because the
“ordinals” in the obvious sense are all nonstandard finite ordinals, which, from
a class standpoint, are not well-ordered at all. However, there is a devious way
to code an uncountable well-ordering using the axiom of extensional coding, and
since its domain is uncountable it must be the same size as the universe.

This is a rather difficult theory. A model of the alternative set theory in the
usual set theory is a nonstandard model of Vω of size ω1 in which every countable
external function extends to a function in the model. It might be best to suppose
that this model is constructed inside L (the constructible universe) so that the
axiom of cardinalities will be satisfied. The axiom of extensional coding follows
from Choice in the ambient set theory.

The constructions of the natural numbers and the real numbers with which
we started go much as usual, except that we get two kinds of natural numbers
(the finite von Neumann ordinals in the set universe (nonstandard), and the
finite von Neumann set ordinals (standard)). The classical reals can be defined
as Dedekind cuts in the standard rationals; these are not sets, but any real
can then be approximated by a nonstandard rational. One can proceed to do
analysis with some (but not quite all) of the tools of the usual nonstandard
analysis.

10 Double extension set theory: a curiosity.

A recent proposal of Andrzej Kisielewicz (see [21]) is that the paradoxes of set
theory might be evaded by having two different membership relations ∈ and ε,
with each membership relation used to define extensions for the other.

We present the axiomatics. The primitive notions of this theory are equality
(=) and the two flavors ∈ and ε of membership. A formula φ is uniform if it
does not mention ε. If φ is a uniform formula, φ∗ is the corresponding formula
with ∈ replaced by ε throughout.

A set A is regular iff it has the same extension with respect to both mem-
bership relations: x ∈ A ≡ xεA.

The comprehension axiom asserts that for any uniform formula φ(x) in which
all parameters (free variables other than x) are regular, there is an object {x |
φ(x)} such that (∀x.x ∈ A ≡ φ∗ ∧ xεA ≡ φ).

The extensionality axiom asserts that for any A and B, (∀x.x ∈ A ≡ xεB) →
A = B. Notice that any object to which this axiom applies is regular.

Finally, a special axiom asserts that any set one of whose extensions is in-
cluded in a regular set is itself regular.

This theory can be shown to interpret ZF in the realm of hereditarily regular
sets . Formally, the proof has the same structure as the proof for Ackermann set
theory. It is unclear whether this theory is actually consistent; natural ways to
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strengthen it (including the first version proposed by Kisielewicz) turn out to
be inconsistent. It is also extremely hard to think about!

An example of the curious properties of this theory is that the ordinals
under one membership relation are exactly the regular ordinals while under the
other they are longer; this means that the apparent symmetry between the two
membership relations breaks!

11 Conclusion

We have presented a wide range of theories here. The theories motivated by
essentially different views of the realm of mathematics (the constructive theories
and the theories which support nonstandard analysis) we set to one side. Simi-
larly, the theories motivated by the desire to keep the universe small can be set
to one side. The alternative classical set theories which support a fluent devel-
opment of mathematics seem to be ZFC or its variants with classes (including
Ackermann), NFU + Infinity + Choice with suitable strong infinity axioms (to
get s.c. sets to behave nicely), and the positive set theory of Esser. Any of these
is adequate for the purpose,in our opinion, including the one currently in use.
There is no compelling reason for mathematicians to use a different foundation
than ZFC ; but there is a good reason for mathematicians who have occasion
to think about foundations to be aware that there are alternatives; otherwise
there is a danger that accidental features of the dominant system of set theory
will be mistaken for essential features of any foundation of mathematics. For
example, it is frequently said that the universal set (an extension which is ac-
tually trivially easy to obtain in a weak set theory) is an inconsistent totality;
of course, this is only true if one adopts Zermelo’s axiom of separation.
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