
On Ordered Pairs

M. Randall Holmes, Boise State

March 29, 2009

1

The subject of this talk is the ordered pair.

We will talk a little about the prehistory of

the concept. We will present some ordered

pair definitions: Norbert Wiener gave the first

one in 1914. We usually use the “simpler”

definition due to Kuratowski. Quine gave yet

another definition which has advantages in the

context of New Foundations but which also has

interesting properties in the context of ZFC.

With all these definitions of the ordered pair,

what is an ordered pair anyway? We discuss

ordered pairs as an abstract data type. We give

an argument, due to Adrian Mathias, which we

think incorrect but interesting, to the effect

that abstractness of the ordered pair data type

implies the axiom of replacement. We think it

is incorrct because Mathias oversimplifies the

abstract data type interface for the pair, in

view of its actual application in set theory (to

the definition of relations and functions).

2

Can we do without the ordered pair? Zermelo
proved his well-ordering theorem in Zermelo
set theory without having an ordered pair def-
inition at his disposal; we might find it hard
even to state the theorem without pairs! The
form of a famous theorem of Sierpinski is con-
ditioned by his use of a pair-free way of repre-
senting orders.

In unpublished work, the Belgian mathemati-
cian Henrard showed how to define the theory
of cardinalities of sets using just three types,
without using a notion of pair. This means
that NF3, the fragment of New Foundations
whose comprehension scheme consists of all
the instances of comprehension which can be
typed using three types, has a theory of car-
dinal number. We have extended his general
approach to get a theory of (most) functions
in TT3 (and so in NF3); we can also show
that we cannot get a complete theory of func-
tions in TT3 by a permutation argument. If
the universe can be linearly ordered, it is easy
to define a pair in TT3.

3

Prehistory of the Ordered Pair I
– Russell

Bertrand Russell knew perfectly well that re-

lations and functions should be thought of as

sets of ordered pairs (“couples”). However,

in Principia Mathematica he and Whitehead

are hampered by the lack of a way to define

ordered pairs in terms of sets. As a result,

the type system of PM contains a type of n-

ary relations for each sequence of n types (ac-

tually, these types are further subdivided into

“orders”, a complication which we will not visit

here).

Ordered pairs (couples) are defined in PM –

as a species of relation! The pair (a, b) is the

relation which holds between x and y iff x =

a ∧ y = b.

It is reported that Russell responded with no

particular interest when Norbert Wiener informed

4

him of his pair definition which made it possible

to collapse the type theory of PM to a simple

linear hierarchy (as long as one also followed

Ramsey in abandoning the orders).

Prehistory of the Ordered Pair II
– Zermelo

Zermelo’s axioms of set theory of 1908 provide
a theory which can found all of classical math-
ematics. But Zermelo, like Russell, did not
know how to represent pairs as sets. Nonethe-
less, he gives definitions and proves theorems
in his 1908 paper which we would have diffi-
culty stating, much less proving, without the
use of ordered pairs.

For example, he defines A ∼ B (for A and B

disjoint) as holding iff there is a set F such that
for each a ∈ A there is exactly one b such that
{a, b} ∈ F and for each b ∈ B there is exactly
one a ∈ A such that {a, b} ∈ F .

In his proof of the Well-Ordering Theorem he
represents partial well-orderings of a set us-
ing the collection of their initial segments (this
representation of well-orderings will reappear in
this talk).

5

The First Definition – Wiener

Norbert Wiener defined the pair (x, y) as {{{x}, ∅}, {{y}}}
in 1914. This pair is adequate for all mathe-

matical purposes in either type theory or Zer-

melo set theory. In PM as we have noted it

makes it possible to work with a simple linear

hierarchy of pairs, since relation types are no

longer needed. If a and b are of type i, (a, b)

will be of type i+ 3, and for any sets A and B

of type i+ 1, A×B will exist in type i+ 4, and

any relation R with domain A and range B will

be coded in type i+ 4 as a subset of A×B.

It is remarkable that Russell was apparently

entirely unimpressed by this simplification of

his theory.

In Zermelo set theory, the axiom of elemen-

tary sets (which provides ∅, singletons, and un-

ordered pairs) ensures that Wiener pairs exist.

6

For any sets A and B, the set A× B is a sub-

set of P3(A ∪B), so it exists by application of

the Zermelo axioms of separation, power set,

union, and elementary sets (pairing). Any re-

lation R with domain A and range B will be

definable as a subset of A×B by separation.

The Usual Definition – Kuratowski

Later, Kuratowski introduced the definition which

is now usual, (x, y) = {{x}, {x, y}}.

The advantage of this definition over Wiener’s

is that (in the context of type theory) the pair

(x, y) lives two types above x and y rather than

three. The cartesian product of A × B is ob-

tained from the second iterated power set of

A∪B rather than the third (basically the same

phenomenon).

The disadvantage is that the proof of the basic

property of the ordered pair (we highlight its

statement below because it is important) is

significantly harder.

Baic Property of the Ordered Pair: (a, b) =

(c, d)↔ a = c ∧ b = d

7

For the Wiener pair this is very easy. Suppose

{{{x}, ∅}, {{y}}} = {{{z}, ∅}, {{w}}}. There is

exactly one element of (x, y) which has two

elements ({{x}, ∅}), exactly one of which is a

singleton, whose sole element is x. The same

argument shows that this uniquely determined

object is also z, so x = z. There is exactly one

element of (x, y) which is a double singleton,

and the sole element of its sole element is y,

and of course also w, so y = w.

We have all seen the argument for the Kura-

towski pair, which is complicated by the fact

that the two formal elements of the Kura-

towski pair (x, y) are in fact the same object

when x = y, which adds nasty case analysis to

the proof.

Why doesn’t this matter?

But we don’t care. We use the Kuratowski
pair.

The reason for this is that we don’t care what
definition of the ordered pair we use, as long
as it satisfies the Basic Property [we will see
below that this is something of an oversimpli-
fication]. Once we have proved that the pair
has the basic property, we have no occasion
[little occasion?] to look at the internal details
of the definition.

Ordered pairs make up what computer scien-
tists call an abstract data type: the pair con-
struction, whatever it is, needs to satisfy the
Basic Property, and as long as it does, it will
serve our mathematical purposes [we will see
below that the abstract data type interface ac-
tually requires a little more information about
the properties of the pair].

8

Another Ordered Pair – the Quine
Pair

The one clear advantage that the Kuratowski
pair has over the Wiener pair is most briefly
expressed in terms of type theory: the Kura-
towski pair is two types higher than its projec-
tions, whereas the Weiner pair is three types
higher.

Willard Quine pointed out that in the presence
of Infinity there is a pair which is the same type
as its projections. This is most useful in the
context of type theory or New Foundations, in
which it makes it much easier to talk natu-
rally about cartesian products and multiplica-
tion (for example), but we will see that the
Quine pair has at least one appealing property
in the context of the usual set theory ZFC.

The definition of the Quine pair is quite baroque;
we give it in full excruciating detail, just be-
cause we think it is fun.

9

We suppose the natural numbers implemented.

We define σ(x) as x+1 if x is a natural number

and x otherwise. We define σ1(x) as σ“x, the

elementwise image of x under σ. We define

σ2(x) as σ“x∪{0}. It is useful to note that for

any x and y, x = y ↔ σi(x) = σi(y) for i = 1,2,

and σ1(x) 6= σ2(y) for any x and y.

Now we define (a, b) as σ1“a∪σ2“b. This works

as a pair because it is the union of disjoint

sets σ1“a and σ2“b from which a and b can be

recovered. It is further the case that every set

is a Quine ordered pair.

In type theory with infinity, as long as a and

b are of type at least 4, (a, b) is defined and

of the same type. In Zermelo set theory or

New Foundations (a, b) exists for each a, b, and

every set is an ordered pair.

The interesting property which this pair has in

the context of the usual set theory is that for

any infinite ordinal α, Vα×Vα = Vα. The ordinal

rank of the Quine pair (a, b) is the maximum

of the ranks of a and b, while the rank of the

Kuratowski pair is two higher.

This feature might have some applications in

presentations of the structure of L, for exam-

ple.

A one-type differential – Holmes

I exhibit a pair of my own creation which is

one type higher than its projections and which

does not require existence of an infinite set.

Let 0,1,2,3,4,5,6,7 be eight distinct objects

(whose precise nature is unimportant).

(x, y) = {(x′,0,1), (x′,2,3), (y′,4,5), (y′,6,7) |
x′ ∈ x ∧ y′ ∈ y}

10

An argument of Mathias

Adrian Mathias has argued that abstractness
of the ordered pair datatype implies the Axiom
of Replacement. His argument is interesting
but I think it actually demonstrates that the
abstract data type interface of the ordered pair
contains a little more information than just the
Basic Property.

Suppose that (∀x ∈ A.(∃!y, φ(x, y))).

Define an ordered pair 〈a, b〉 as (0, (a, b)) if a 6∈
A and as (c, (a, b)) where c is the unique ob-
ject such that φ(a, c) holds if a ∈ A. This pair
clearly satisfies the Basic Property [it may not
be exactly Mathias’s pseudo-pair (I’m working
from memory), but it captures his idea]. So by
abstractness we can rely on cartesian products
to exist: we write A⊗B for {〈a, b〉 | a ∈ A ∧ b ∈
B}. The set

{x ∈
⋃ 2(A⊗A) | (∃y ∈ A×A.(x, y) ∈ A⊗A)}

11

(note that the pair here is the usual one and

that both kinds of cartesian product appear)

can also be written

{y | (∃x ∈ A.φ(x, y))},
establishing that Replacement holds!

Our critique of this argument has to do with

the purpose of the pair. We introduce the pair

not for its own sake but to support the the-

ory of relations and functions. For the pair to

successfully support the theory of relations and

functions (with domain A and range B, for ex-

ample), we need the cartesian product A × B
to exist. This is of course the property of the

usual pair that Mathias illicitly exports from

his weird pair to the usual pair in the above

argument to establish Replacement. We note

that another property is also required in or-

der to be able to define domains and ranges

of sets: any set R of ordered pairs needs to

be a subset of some cartesian product A × B
(whence we can define dom(R), for example as

{x ∈ A | (∃y.(x, y) ∈ R)}. Notice that the fact

that an appropriate A × B in the case of the

Kuratowski pair is
⋃2R × ⋃2R is used in the

argument above. These assertions about sets

of pairs are relevant to the purpose of the pair

and show that the ordered pair data type, prop-

erly understood, is implemented in Zermelo set

theory without Replacement.

Can we get along without the
ordered pair?

We noted above that Zermelo managed to do

quite a lot in his 1908 paper without using pairs

at all. Do we actually need to implement pairs

to get a theory of functions and relations?

Interesting work along these lines, which has

never been published, was done by the Bel-

gian mathematician Henrard, and I have re-

cently extended this to some extent. Henrard

showed that it is possible to define a complete

theory of cardinality in the theory of types with

just three types (and so in the fragment NF3

of New Foundations defined and shown to be

consistent by Grishin in 1969, an untyped set

theory in which only the instances of compre-

hension which are typable using three types are

used). This definition is perfectly usable in or-

dinary set theory, and one can prove such re-

sults as the Schröder-Bernstein theorem in the
12

three type context. Note that in type theory

with three types the Kuratowski pair is defin-

able but useless, as one can define the Kura-

towski pair only of type 0 objects, which will

be type 2 and not capable of being a member

of a set.

We follow the lines of our extension of Hen-

rard’s concept (our definition of cardinality is

quite different from his, though it is in the

same spirit). The starting point is the obser-

vation (also exploited by Zermelo in his 1908

paper and by Sierpinski to reduce by one the

height of the tower of exponentials in his the-

orem ℵ(κ) < exp3(κ) of choice-free mathemat-

ics) that a partial order (on type 0) can be

represented by the (type 2) collection of the

(type 1) segments of the partial order.

Coding Relations

Suppose that xRy is notation for a transitive,

reflexive relation (a quasi-order). Instead of

capturing R using a collection of ordered pairs,

capture it as a collection of “segments”. De-

fine xR as {y | y Rx} and define R as the set

{xR | x ∈ dom(R)}.

If R is a set which codes a relation in this way,

then xR is the intersection of all elements of R

which contain x.

For R any set of sets at all, we define xRy

as (∀A ∈ R.x ∈ A → y ∈ A). The relation R

defined in this way is reflexive and transitive.

Of course the same quasi-order can now be

coded by more than one set. A condition which

picks out the originally intended relation codes

is R = {xR | x ∈
⋃
R}. Each quasi-order has a

unique code satisfying this condition.

13

Transitive reflexive relations (quasi-orders) in-

clude two important categories of relation as

special cases: equivalence relations, which are

represented by the associated partition, and

partial orders, which are represented by the

sets of their closed segments (and also by the

set of all their segments).

It is amusing to observe that the Kuratowski

ordered pair (x, y) is the code for the minimal

quasi-order ≤ such that x ≤ y. This has the

flavor of the PM definition of the ordered pair.

Functions as Quasi-Orders

Any function f determines a quasi-order: we

define x ≥f y as holding iff (∃n.y = fn(x)).

Alternatively, we can define the segment in ≥f
determined by x as the intersection of all sets

which contain x and are closed under f . This

is also called the “forward orbit” of f .

For any x ∈ dom(f), we define xf as (∃n.y =

fn(x)), and we code f by the set {xf | x ∈
dom(f)}. It is worth noting that xf and the

set we have just constructed as code for f are

definable in type theory with three types (or in

ordinary set theory) if the function f is defined

by a formula (y = f(x) equivalent to a formula

φ(x, y)). In type theory x and y would be type

0, xf would be type 1 and f would be type 2.

In most but not all cases we can define f(x)

using the element x and the code f for the

function.
14

If {x} ∈ f , then f(x) = x.

The ideal condition is that f(x) is the immedi-
ate successor of x in the quasi-order: if there
is a unique y such that y 6= x, x 6∈ yf , and
xf = yf ∪ {x}, then this y is f(x).

If the forward orbit of x has two elements, then
for some y 6= x, xf = {x, y} = yf , and in this
case y = f(x). Notice that this same thing
occurs if f(x) 6∈ dom(x): there is no way to dis-
tinguish this case from the case of a 2-cycle,
so we extend all functions f to map elements
of rng(f)−dom(f) back to their preimages, and
make sure to specify intended domains in ap-
plications.

The bad case in which we cannot for the mo-
ment recover f(x) is that in which the forward
orbit xf is finite and f(x) (and possibly x it-
self) belongs to a finite cycle with an element
other than x or f(x).

We now give a partial formal definition of func-

tion.

For any set f and element x of
⋃
f , we define

xf as the intersection of all elements of f which

contain x.

A nice function is a set of sets f with the fol-

lowing properties:

1. For all x ∈ ⋃ f , xf ∈ f .

2. Every element of f is of the form xf for

some element of f .

3. Every element xf is either of the form {x}∪
yf for a uniquely determined y 6= x, or has

one element, or has two elements.

15

We define f(x), where f is a nice function and

x ∈ ⋃
f , as x in case xf = {x}, as the other

element of xf if |xf | = 2, and as the unique

y 6= x such that xf = {x} ∪ yf otherwise.

Cardinality

Suppose A ∼ B. This means there is a one-

to-one function from A onto B. Let f be such

a function. Define the set coding f as above.

A problem will exist if there are finite cycles

in the function f , which will be finite sets xf
with more than two elements (finite cycles of

order 2 with additional preimages also cause

problems but cannot occur in this context).

Replace each such element of the set coding

f with the set of singletons of its elements to

obtain a set f∗ which codes a nice function

which differs from f in fixing each element of

each finite cycle in f . Since each element of a

finite cycle belongs to A ∩ B, it is easy to see

that f∗ still codes a bijection from A to B.

So we can define A ∼ B as holding iff there is a

nice function f with the property that for each

x, y ∈ A, f(x) = f(y)→ x = y. Notice that the

16

fact that elements of B − A are mapped back

into A in a way which might violate injectivity

is ignored.

We can prove basic properties of cardinality us-

ing this definition, such as reflexivity, symme-

try and transitivity of equinumerousness, and

the Schröder-Bernstein theorem. An odd thing

which happens is that if f witnesses A ∼ B and

g witnesses B ∼ C, then A ∼ C is not neces-

sarily witnessed by g ◦ f , because g ◦ f is not

necesssarily a nice function: however, we can

define (g◦f)∗ as above and show that it works.

More Functions

We describe a device for constructing a code

for a general function which might have finite

cycles. Let f be a function (perhaps defined

by a formula). Define the code for f as above.

If there are no large cycles (finite orbits with

more than one member), this will be our final

code for f . Otherwise (and on an additional

assumption) we add more elements to f to

obtain a code from which we can define f(x) in

all cases (with the usual extension to rng(f)−
dom(f)). The additional assumption is that for

each large cycle c ∈ f we can select an element

xc. This would be true if dom(f) were linearly

orderable, for example.

The additional elements we add are all subsets

of large cycles. For each x such that c ⊆ xf ,

where c is a large cycle, we add xf ′ as a new

17

element of the code for f , where f ′ is the func-
tion which differs from f only in fixing each xc
and each (fdc)−1(xc). x′f is an orbit modified
by being truncated at any xc or at the unique
preimage of an xc in c.

In the extended code of f , the cycles are iden-
tifiable as the only elements of f which are
disjoint unions of two elements of f (c is the
union of (xc)f ′ = {xc} and (f(xc))f ′ = c−{xc}),
and the special elements xc are identifiable as
the sole element of the singleton element of
the 2-partition of a cycle. Removing the cy-
cles from the extended code for f gives the
code for f ′: we can then define f ′(x) as above,
and define f(x) as mapping each xc to the only
element of c which is not an image under f ′,
and as mapping each (fdc)−1(x) (identifiable
as the only element of c other than xc which
is fixed by f ′) to xc. There is a special case
where c is the union of two singletons, so we
cannot specify xc; in this case f maps each of
the two elements of c to the other.

Definition of General Function

A general function is a set of sets f with the

following properties.

1. For each x ∈ ⋃ f , xf ∈ f .

2. Any element of f which is not of the form

xf is the union of two disjoint sets belong-

ing to f , one set a singleton and the other

coding a finite linear order. Any two dis-

tinct elements of f not of the form xf are

disjoint. The set obtained by removing all

the sets not of the form xf from f is a nice

function f ′.

We define f(x) as follows. For each x not be-

longing to an element of f − f ′, we define f(x)

as f ′(x). In the case where both elements of

18

the partition of c ∈ f − f ′ are singletons, if

the two elements of c are x and y, we define

f(x) = y and f(y) = x. If c ∈ f − f ′ has more

than two elements, we define xc as the ele-

ment of the singleton element of the unique

partition of c into two elements of f . We de-

fine f(xc) as the unique element of c which is

not the image under f ′ of an element of c (the

minimum element under ≥f ′ of the linear or-

der element of the partition). Define yc as the

other fixed point under f ′ in c (the maximum

element under ≥f ′ of the linear order element

of the partition); we define f(yc) as xc. For

each other element z of c, we define f(z) as

f ′(z).

This only works to define functions in all cases

if we have choice from disjoint collections of

finite sets. Further, it is possible to show by a

Frankel-Mostowski permutation argument that

there are functions with 3-cycles which cannot

be represented by sets at all in the theory of

types with three types, in a suitable precise

sense.

If we have a uniform method of choosing one

element from any unordered pair (as we would

have if there were a linear order of the uni-

verse, for example) then there is a sensible

ordered pair which can be used to define re-

lations and functions in the usual way in type

theory with three types. Choose two disjoint

sets A and B each of size 5. Define (a, b) as

A∆{a, b} if a is the selected member of {a, b}
and as B∆{a, b} otherwise. This limits the

sphere in which the pair-free theory is likely to

be considered. But it does have applications:

19

for example, the theory of order type (which

requires isomorphisms between well-orderings,

which can be represented in our scheme in a

choice-free context since they are partial or-

ders) is handled by this representation of func-

tions because the domain of an isomorphism

between well-orderings is well-ordered.

There can be no reliable notion
of function in TT3

Consider a model of TT4 (just add one more

type) in which there is a function f (repre-

sented by a set of Kuratowski pairs as usual)

whose domain is an infinite union of cycles of

length 3.

We use a permutation method to modify this

model. Consider all elements A of the model

(at any positive type) which have the property

that for some finite subset B of the domain of

f , A is invariant under all permutations of type

0 which are obtained by iterating f 0-2 times

independently on each cycle in f which is a

subset of V − B. It is straightforward to show

that these sets (the sets of finite support with

respect to a certain group of permutations of

type 0) make up a model of TT4. This is

essentially the Frankel-Mostowski method for

20

showing that Choice is independent of ZF with

atoms.

Note that f has finite support (in fact, empty

support) with respect to the group, so it still

exists in the model. But the new model can-

not contain any choice set for the finite orbits

under f , since all but finitely many of the or-

bits must contain 0 or 3 of the elements of any

given set (because all but finitely many of the

orbits are outside the support of the set).

Thus we cannot expect to code f as above.
But we can say more: we cannot code f at
all in the first three types. For any set X of
type 1, we have already seen that the elements
of all but finitely many orbits have exactly the
same relations to X; similarly, for any type 2
set X and all but finitely many orbits {a, b, c},
and for any Y of type 1, either all of {a, b}∪Y ,
{a, c} ∪ Y {b, c} ∪ Y are in X or none of them
are. In fact, the sets with finite support in our
group in types 1-2 are the same as the sets
with finite support in the larger group contain-
ing all permutations of each of the orbits in-
dependently. This means that there can be
no 3-typed formula H(x, y, f∗) equivalent to
y = f(x), since the pair 〈x, y〉 will have ex-
actly the same relations to the parameter f∗
that the pair 〈y, x〉 does in all but finitely many
cases where y = f(x) is true. But the formula
y = f(x) (though it involves 4 types) can be
used as a “black box” in otherwise 3-typed for-
mulas to define sets (since f does have finite

21

support and we still have a model of TT4. If

we had a function definition which worked for

all 3-typed formulas, it would be expected to

work to define f in this case as well.

