A high-order meshfree framework for solving PDEs on irregular domains and surfaces

Varun Shankar
University of Utah

We present meshfree methods based on Radial Basis Function (RBF) interpolation for solving partial differential equations (PDEs) on irregular domains and surfaces; such domains are of great importance in mathematical models of biological processes. First, we present a generalized high-order RBF-Finite Difference (RBF-FD) method that exploits certain approximation properties of RBF interpolants to achieve significantly improved computational complexity, both in serial and in parallel. Like all RBF-FD methods, our method requires stabilization when applied to solving PDEs. Consequently, we present a robust and automatic hyperviscosity-based stabilization technique to rectify the spectra of RBF-FD differentiation matrices. The amount of hyperviscosity is determined quasi-analytically in two stages: first, we develop a novel mathematical model of spurious solution growth, and second, we use simple 1D Von Neumann analysis to analytically cancel out these spurious growth terms. The resulting expressions for hyperviscosity are a generalization of formulas from both RBF-FD and classical spectral methods. The resulting stabilized RBF-FD method serves as a high-order meshfree framework for solving PDEs on irregular domains. Finally, we present a powerful new RBF-FD technique that allows for the solution of PDEs on surfaces using scattered nodes and Cartesian coordinate systems. In all cases, our methods achieve $O(N)$ complexity for N nodes.

Time: Friday, 02/09/2018, 3:00-4:00pm
Location: ILC 201
Refreshments: MB 226 at 2:40pm