| Introduction | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------|---------------------------|------------------------------------|---------|-------------|
| 000000       | 00<br>0000                | 00000                              | 000     |             |
| 00           |                           |                                    |         |             |

# Cryptography: Key Issues in Security

L. Babinkostova J. Keller B. Schreiner J. Schreiner-McGraw K. Stubbs



### August 1, 2014

・ 同 ト ・ ヨ ト ・ ヨ ト

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>0000                | 00000                              | 000     |             |
|                   |                           |                                    |         |             |

#### Introduction

Motivation Group Generated Questions and Notation

### Translation Based Ciphers

Previous Results Definitions Advanced Encryption Standard (AES) Definition of AES AES as a tb cipher Results Proper Mixing Layer Non-Surjective Key Schedule Conclusions

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| •<br>000000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Motivation        |                           |                                    |         |             |



| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| •<br>000000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Motivation        |                           |                                    |         |             |



| Introduction<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|-------------------------------------------------------------------------------|---------------------------|------------------------------------|---------------------|-------------|
| Group Generated                                                               |                           |                                    |                     |             |

# General Cryptosystems

## Definition

A *cryptosystem* is an ordered 4-tuple  $(\mathcal{M}, \mathcal{C}, \mathcal{K}, \mathcal{T})$  where  $\mathcal{M}, \mathcal{C}$ , and  $\mathcal{K}$  are called the *message space*, the *ciphertext space*, and the *key space* respectively, and where  $\mathcal{T} : \mathcal{M} \times \mathcal{K} \to \mathcal{C}$  is a transformation such that for each  $k \in \mathcal{K}$ , the mapping  $\mathcal{T}[k] : \mathcal{M} \to \mathcal{C}$ , called an encryption transformation, is invertible.

・ 同 ト ・ ヨ ト ・ ヨ ト

| Introduction<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|-------------------------------------------------------------------------------|---------------------------|------------------------------------|---------------------|-------------|
| Group Generated                                                               |                           |                                    |                     |             |

# General Cryptosystems

## Definition

A *cryptosystem* is an ordered 4-tuple  $(\mathcal{M}, \mathcal{C}, \mathcal{K}, \mathcal{T})$  where  $\mathcal{M}, \mathcal{C}$ , and  $\mathcal{K}$  are called the *message space*, the *ciphertext space*, and the *key space* respectively, and where  $\mathcal{T} : \mathcal{M} \times \mathcal{K} \to \mathcal{C}$  is a transformation such that for each  $k \in \mathcal{K}$ , the mapping  $\mathcal{T}[k] : \mathcal{M} \to \mathcal{C}$ , called an encryption transformation, is invertible.

For any cryptosystem  $\Pi = (\mathcal{M}, \mathcal{C}, \mathcal{K}, T)$ , let  $\mathcal{T}_{\Pi} = \{\mathcal{T}[k] : k \in \mathcal{K}\}$  be the set of all encryption transformations.

・ロト ・四ト ・ヨト ・ヨト

| Introduction<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|-------------------------------------------------------------------------------|---------------------------|------------------------------------|---------------------|-------------|
| Group Generated                                                               |                           |                                    |                     |             |

# General Cryptosystems

## Definition

A *cryptosystem* is an ordered 4-tuple  $(\mathcal{M}, \mathcal{C}, \mathcal{K}, \mathcal{T})$  where  $\mathcal{M}, \mathcal{C}$ , and  $\mathcal{K}$  are called the *message space*, the *ciphertext space*, and the *key space* respectively, and where  $\mathcal{T} : \mathcal{M} \times \mathcal{K} \to \mathcal{C}$  is a transformation such that for each  $k \in \mathcal{K}$ , the mapping  $\mathcal{T}[k] : \mathcal{M} \to \mathcal{C}$ , called an encryption transformation, is invertible.

For any cryptosystem  $\Pi = (\mathcal{M}, \mathcal{C}, \mathcal{K}, T)$ , let  $\mathcal{T}_{\Pi} = \{\mathcal{T}[k] : k \in \mathcal{K}\}$  be the set of all encryption transformations.

### Definition

The symbol  $\mathcal{G} = \langle \mathcal{T}_{\Pi} \rangle$  denotes group that is generated by the set  $\mathcal{T}_{\Pi}$ .

| Introduction<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | <b>Results</b><br>000<br>0 | Conclusions |
|-------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------|-------------|
| Group Generated                                                               | 1                                       |                                    |                            |             |

# Group Generated by One Round Function

### Definition

Let T[k] denote the round function of the cipher under the key  $k\in\mathcal{K},$  where  $\mathcal K$  denotes the set of all round keys.

□ > < E > < E >

| Introduction    | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | <b>Results</b><br>000<br>0 | Conclusions |
|-----------------|-----------------------------------------|------------------------------------|----------------------------|-------------|
| Group Generated | 1                                       |                                    |                            |             |

# Group Generated by One Round Function

### Definition

Let T[k] denote the round function of the cipher under the key  $k \in \mathcal{K}$ , where  $\mathcal{K}$  denotes the set of all round keys.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

#### Definition

Let  $L = \{T[k] | k \in \mathcal{K}\}$  be the set of all round functions.

| Introduction    | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | <b>Results</b><br>000<br>0 | Conclusions |
|-----------------|-----------------------------------------|------------------------------------|----------------------------|-------------|
| Group Generated | 1                                       |                                    |                            |             |

# Group Generated by One Round Function

### Definition

Let T[k] denote the round function of the cipher under the key  $k \in \mathcal{K}$ , where  $\mathcal{K}$  denotes the set of all round keys.

#### Definition

Let  $L = \{T[k] | k \in \mathcal{K}\}$  be the set of all round functions.

### Definition

We denote  $\mathcal{G}_T = \langle \{T[k] | k \in \mathcal{K} \} \rangle$  generated by these permutations.

(日) (ヨ) (ヨ)

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>00●000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Group Generated   | l                         |                                    |         |             |
|                   |                           |                                    |         |             |



### Definition

An s-round cipher has key schedule  $KS : \mathcal{K} \to \mathcal{K}^s$  so that any key  $k \in \mathcal{K}$  produces a set of subkeys  $k_i \in \mathcal{K}$ ,  $1 \leq i \leq s$ .

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>00●000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Group Generated   | l                         |                                    |         |             |
|                   |                           |                                    |         |             |



### Definition

An s-round cipher has key schedule  $KS : \mathcal{K} \to \mathcal{K}^s$  so that any key  $k \in \mathcal{K}$  produces a set of subkeys  $k_i \in \mathcal{K}$ ,  $1 \leq i \leq s$ .

### Definition

The group  $\mathcal{G}_T^s = \langle T[k_s]T[k_{s-1}]\cdots T[k_1]|k_i \in \mathcal{K} \rangle$  is the group generated by s round functions (independently chosen).

▲□ ▶ ▲ □ ▶ ▲ □ ▶

| O<br>O<br>OOO●OO<br>OO | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|------------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| Group Generated        |                                         |                                    |                     |             |

## Relation between these groups

$$\mathcal{G}_T = \langle T[k] | k \in \mathcal{K} \rangle$$
$$\mathcal{G}_T^s = \langle T[k_s] T[k_{s-1}] \cdots T[k_1] | k_i \in \mathcal{K} \rangle$$
$$\mathcal{G} = \langle T[k_s] T[k_{s-1}] \cdots T[k_1] | KS(k) = (k_1, k_2, \cdots, k_s) \rangle$$

▲日 ▶ ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ ▲ 臣 → のへの

Cryptography: Key Issues in Security

| O<br>O<br>OOO●OO<br>OO | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|------------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| Group Generated        |                                         |                                    |                     |             |

## Relation between these groups

$$\mathcal{G}_T = \langle T[k] | k \in \mathcal{K} \rangle$$
$$\mathcal{G}_T^s = \langle T[k_s] T[k_{s-1}] \cdots T[k_1] | k_i \in \mathcal{K} \rangle$$
$$\mathcal{G} = \langle T[k_s] T[k_{s-1}] \cdots T[k_1] | KS(k) = (k_1, k_2, \cdots, k_s) \rangle$$

$$\mathcal{G}=\langle \mathcal{T}_\Pi\rangle$$

≣≯

▲母▶ ▲ 国

Cryptography: Key Issues in Security

| O<br>O<br>OOO●OO<br>OO | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|------------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| Group Generated        |                                         |                                    |                     |             |

## Relation between these groups

$$\mathcal{G}_T = \langle T[k] | k \in \mathcal{K} \rangle$$
$$\mathcal{G}_T^s = \langle T[k_s] T[k_{s-1}] \cdots T[k_1] | k_i \in \mathcal{K} \rangle$$
$$\mathcal{G} = \langle T[k_s] T[k_{s-1}] \cdots T[k_1] | KS(k) = (k_1, k_2, \cdots, k_s) \rangle$$

$$\mathcal{G} = \langle \mathcal{T}_{\Pi} \rangle$$

$$\mathcal{G} \subset \mathcal{G}_T^s \trianglelefteq \mathcal{G}_T$$

≣≯

▲母▶ ▲ 国

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>0000●0<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Group Generated   |                           |                                    |         |             |
|                   |                           |                                    |         |             |



### Definition

Recall that a group action on a set V is transitive if

$$\forall x,y \in V, \ \exists g \in G \text{ s.t. } xg = y.$$

э

Cryptography: Key Issues in Security

| Introduction       | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>00000●0<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Group Generated    |                           |                                    |         |             |
|                    |                           |                                    |         |             |



### Definition

Recall that a group action on a set V is transitive if

$$\forall x,y \in V, \ \exists g \in G \text{ s.t. } xg = y.$$

### Definition

A transitive group G is imprimitive in its action on V if there exists a non-trivial partition  $\mathcal{B}$  of V (i.e.  $\mathcal{B} \neq \{V\}, \mathcal{B} \neq \{\{v\} \mid v \in V\}$ ) such that  $Bg \in \mathcal{B}, \forall B \in \mathcal{B}$  and  $\forall g \in G$ . We call such a  $\mathcal{B}$  a block system for G. A group action is primitive if it is not imprimitive.

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Group Generated   |                           |                                    |         |             |

## Examples of Block Systems

### Example

 $T(\mathbb{Z}_n)$ , the group of translations on  $\mathbb{Z}_n$ , where  $x \mapsto a + x \pmod{n}$  has as many block systems as there are factorizations of n into two integers a and b, both greater than 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

| Introduction       | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------------|---------------------------|------------------------------------|---------|-------------|
| ○<br>○○○○○○●<br>○○ | 00<br>0000                | 00000                              | 000     |             |
| Group Generated    |                           |                                    |         |             |

## Examples of Block Systems

### Example

 $T(\mathbb{Z}_n)$ , the group of translations on  $\mathbb{Z}_n$ , where  $x \mapsto a + x \pmod{n}$  has as many block systems as there are factorizations of n into two integers a and b, both greater than 1.

(日本) (日本) (日本)

### Example

The subgroup of the symmetric group on  $S = \{1, 2, 3, 4\}$ ,  $\langle \sigma \rangle$ , where  $\sigma = (1234)$ , is imprimitive. A block system  $\mathcal{B}$  is  $\{\{1, 3\}, \{2, 4\}\}$ .

| Introduction                    | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|---------------------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br><b>0</b>         | 00<br>0000                | 00000                              | 000     |             |
| Questions and N                 | otation                   |                                    |         |             |
| OOOOOO<br>●O<br>Questions and N | otation                   | 00000                              | 0       |             |

▲□ → ▲ 三 → ▲ 三 →

Our Questions

Is the set of encryption functions a group?

| Introduction            | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br><b>0</b> | 00<br>0000                | 00000                              | 000     |             |
| Questions and N         | lotation                  |                                    |         |             |
|                         |                           |                                    |         |             |

(\* ) \* ) \* ) \* )



- Is the set of encryption functions a group?
- When is the group generated transitive?

| Introduction            | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br><b>0</b> | 00<br>0000                | 00000                              | 000     |             |
| Questions and N         | lotation                  |                                    |         |             |
|                         |                           |                                    |         |             |



- Is the set of encryption functions a group?
- When is the group generated transitive?
- When is the group generated primitive?

| Introduction    | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-----------------|---------------------------|------------------------------------|---------|-------------|
| 0               | 00                        | 00000                              | 000     |             |
| 0               | 0000                      |                                    | Ŭ       |             |
| Questions and N | otation                   |                                    |         |             |
|                 |                           |                                    |         |             |



- Is the set of encryption functions a group?
- When is the group generated transitive?
- When is the group generated primitive?
- When is the group generated by the encryption functions the symmetric or alternating group?

A B > A B >

| Introduction    | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-----------------|---------------------------|------------------------------------|---------|-------------|
| 0               | 00                        | 00000                              | 000     |             |
| 0000000         | 0000                      | 00000                              | 0       |             |
| Questions and N | otation                   |                                    |         |             |
|                 |                           |                                    |         |             |

Notation

• Message Space:  $r, m, n \in \mathbb{Z}^+$ ,  $\mathcal{M} = \operatorname{GF}(p^{rmn}) \cong (\operatorname{GF}(p^r))^{mn}$ 

| Introduction              | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|---------------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br><b>0</b> ● | 00<br>0000                | 00000                              | 000     |             |
| Questions and N           | otation                   |                                    |         |             |

## Notation

- ▶ Message Space:  $r, m, n \in \mathbb{Z}^+$ ,  $\mathcal{M} = \operatorname{GF}(p^{rmn}) \cong (\operatorname{GF}(p^r))^{mn}$
- ▶ Internal Representation:  $t : (GF(p^r))^{mn} \to M_{m,n}(GF(p^r))$

$$t: [a_1, \dots, a_{mn}] \mapsto \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ a_{n+1} & a_{n+2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(m-1)n} & a_{(m-1)n+1} & \dots & a_{mn} \end{bmatrix}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

| Introduction<br>0 | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 000000            | 0000                      | 00000                              | 0       |             |
| Previous Results  |                           |                                    |         |             |

#### Theorem

Let C be a translation-based cipher over  $\mathbb{F}_q$ , and suppose that the h-th round is proper. If each brick of  $\gamma_h$  is

- 1. weakly  $p^r$ -uniform, and
- 2. strongly *r*-anti-invariant

then the group generated by  $\ensuremath{\mathcal{C}}$  is primitive.

| Introduction     | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|------------------|---------------------------|------------------------------------|---------|-------------|
| 000000           | 0000                      | 00000                              | 0000    |             |
| Previous Results |                           |                                    |         |             |

### Theorem

Let C be a translation-based cipher such that

- 1.  $\mathcal C$  satisfies the hypotheses of the above theorem, and
- 2. for all  $0 \neq a \in V_i$ ,  $\{(x+a)\gamma_i x\gamma_i | x \in V_i\}$  is not a coset of a subgroup of  $V_i$

then the group generated by C is either Alt(V) or Sym(V).

R. Aragona, A. Caranti, F. Dalla Volta, and M. Sala, *On the group generated by round functions of translation based ciphers over arbitrary finite fields*, Elsevier, (2013).

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>000                 | 00000                              | 000     |             |
| Definitions       |                           |                                    |         |             |

### Definition

An element  $\gamma \in \text{Sym}(V)$  is called a bricklayer transformation with respect to  $V = V_1 \oplus \cdots \oplus V_n$  if  $\gamma$  acts on an element  $v = v_1 + \cdots + v_n$  with  $v_i \in V_i$  as  $v\gamma = v_1\gamma_1 + \cdots + v_n\gamma_n$  for some  $\gamma_i \in \text{Sym}(V)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Definitions       |                           |                                    |         |             |

## Definition

Let  $\psi \in GL(V)$  be a linear map. Then  $\psi$  is called a mixing layer. If  $\psi$  leaves no sum  $\oplus V_i$  invariant, then  $\psi$  is called a proper mixing layer.

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>00●0                | 00000                              | 000     |             |
| Definitions       |                           |                                    |         |             |

通 と く ヨ と く

- Key Schedule:  $KS : \mathcal{K} \to \mathcal{K}^s$ .
- Key Mapping:  $\phi(k,h): \mathcal{K} \times \{1,\ldots,s\} \to \mathcal{M}.$

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>00●0                | 00000                              | 000     |             |
| Definitions       |                           |                                    |         |             |

- Key Schedule:  $KS : \mathcal{K} \to \mathcal{K}^s$ .
- Key Mapping:  $\phi(k,h): \mathcal{K} \times \{1,\ldots,s\} \to \mathcal{M}.$
- ▶ In both cases the key k is called the **master key**.

| Introduction      | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 0<br>000000<br>00 | 00<br>0000                | 00000                              | 000     |             |
| Definitions       |                           |                                    |         |             |

A block cipher  $\mathcal{C} = \{\tau_k : k \in \mathcal{K}\}$  over  $\mathbb{F}_q$  is translation based (tb) if

- 1. each  $\tau_k$  is the composition of h round functions  $\tau_{k,h}$ , and  $h = 1, \ldots, s$  where in turn each round function can be written as a composition  $\sigma_{\phi(k,h)} \circ \psi_h \circ \gamma_h$  of three permutations of V, where
  - $\gamma_h$  is a bricklayer transformation not depending on k and with  $0\gamma_h = 0$ ,

- $\psi_h$  is a linear transformation not depending on k,
- $\phi: \mathcal{K} \times \{1, \dots, s\} \to V$  is the key schedule
- 2. for one round  $h_0$ 
  - $\psi_{h_0}$  is a proper mixing layer, and
  - the map  $\mathcal{K} \to V$  by  $k \mapsto \phi(k, h_0)$  is surjective on V.

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES)<br>•0000 | Results<br>000<br>0 | Conclusions |
|-----------------------------------|-----------------------------------------|---------------------------------------------|---------------------|-------------|
| AES as a tb ciph                  | ler                                     |                                             |                     |             |

For reference a single round of AES is the following composition of functions:

$$\sigma_k \circ \rho \circ \pi \circ \lambda$$

A B M A B M

Recall, our definition of tb cipher had three components:

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers | Advanced Encryption Standard (AES)<br>•0000 | Results<br>000<br>0 | Conclusions |
|-----------------------------------|---------------------------|---------------------------------------------|---------------------|-------------|
| AES as a tb ciph                  | ler                       |                                             |                     |             |

For reference a single round of AES is the following composition of functions:

$$\sigma_k \circ \rho \circ \pi \circ \lambda$$

A B M A B M

Recall, our definition of tb cipher had three components:

• A bricklayer transformation.

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers | Advanced Encryption Standard (AES)<br>•0000 | Results<br>000<br>0 | Conclusions |
|-----------------------------------|---------------------------|---------------------------------------------|---------------------|-------------|
| AES as a tb ciph                  | ler                       |                                             |                     |             |

For reference a single round of AES is the following composition of functions:

$$\sigma_k \circ \rho \circ \pi \circ \lambda$$

(4) E > (4) E >

Recall, our definition of tb cipher had three components:

- A bricklayer transformation.
- A mixing layer.

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES)<br>•0000 | Results<br>000<br>0 | Conclusions |
|-----------------------------------|-----------------------------------------|---------------------------------------------|---------------------|-------------|
| AES as a tb ciph                  | er                                      |                                             |                     |             |

For reference a single round of AES is the following composition of functions:

$$\sigma_k \circ \rho \circ \pi \circ \lambda$$

A B > A B >

Recall, our definition of tb cipher had three components:

- A bricklayer transformation.
- A mixing layer.
- A surjective key schedule.

| Introduction     | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|------------------|---------------------------|------------------------------------|---------|-------------|
| 000000           | 0000                      | 00000                              | 0000    |             |
| AES as a tb ciph | er                        |                                    |         |             |

SubBytes,  $\lambda$ 

| $a_0$    | $a_1$    | $a_2$    | $a_3$    |           | $a'_0$            | $a'_1$    | $a'_2$            | $a'_3$    |
|----------|----------|----------|----------|-----------|-------------------|-----------|-------------------|-----------|
| $a_4$    | $a_5$    | $a_6$    | $a_7$    |           | $a'_4$            | $a'_5$    | $a'_6$            | $a'_7$    |
| $a_8$    | $a_9$    | $a_{10}$ | $a_{11}$ |           | $a'_8$            | $a'_9$    | $a_{10}^{\prime}$ | $a'_{11}$ |
| $a_{12}$ | $a_{13}$ | $a_{14}$ | $a_{15}$ |           | $a_{12}^{\prime}$ | $a'_{13}$ | $a_{14}^{\prime}$ | $a'_{15}$ |
|          |          |          |          | A = 1 + D |                   |           |                   |           |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

Cryptography: Key Issues in Security

| Introduction    | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-----------------|---------------------------|------------------------------------|---------|-------------|
| 000000          | 00<br>0000                | 00000                              | 000     |             |
| AES as a tb cip | her                       |                                    |         |             |

## ShiftRows, $\pi$

| $a_0$    | $a_1$    | $a_2$    | $a_3$    | $\longrightarrow$ shift $c_0 \longrightarrow$ | $a_0$    | $a_1$    | $a_2$    | $a_3$    |
|----------|----------|----------|----------|-----------------------------------------------|----------|----------|----------|----------|
| $a_4$    | $a_5$    | $a_6$    | $a_7$    | $\longrightarrow$ shift $c_1 \longrightarrow$ | $a_7$    | $a_4$    | $a_5$    | $a_6$    |
| $a_8$    | $a_9$    | $a_{10}$ | $a_{11}$ |                                               | $a_{10}$ | $a_{11}$ | $a_8$    | $a_9$    |
| $a_{12}$ | $a_{13}$ | $a_{14}$ | $a_{15}$ | $\longrightarrow$ shift $c_3 \longrightarrow$ | $a_{13}$ | $a_{14}$ | $a_{15}$ | $a_{12}$ |

・ロト ・聞 と ・ ほ と ・ ほ と …

æ

| Introduction     | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| AES as a tb ciph | ier                                     |                                    |                     |             |

# MixColumns, $\rho$

| $c_0$ | $c_1$ | $c_2$ | $c_3$ |
|-------|-------|-------|-------|
| $c_1$ | $c_2$ | $c_3$ | $c_0$ |
| $c_2$ | $c_3$ | $c_0$ | $c_1$ |
| $c_3$ | $c_0$ | $c_1$ | $c_2$ |

| $a_0$    | $a_1$    | $a_2$    | $a_3$    |
|----------|----------|----------|----------|
| $a_4$    | $a_5$    | $a_6$    | $a_7$    |
| $a_8$    | $a_9$    | $a_{10}$ | $a_{11}$ |
| $a_{12}$ | $a_{13}$ | $a_{14}$ | $a_{15}$ |

| $a'_0$            | $a_1'$    | $a'_2$            | $a'_3$    |
|-------------------|-----------|-------------------|-----------|
| $a'_4$            | $a_5'$    | $a_6'$            | $a'_7$    |
| $a'_8$            | $a'_9$    | $a_{10}^{\prime}$ | $a'_{11}$ |
| $a_{12}^{\prime}$ | $a'_{13}$ | $a'_{14}$         | $a'_{15}$ |

æ

・ロン ・部と ・ヨン ・ヨン

| Introduction<br>0<br>000000 | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|-----------------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| AES as a tb ciph            | ier                                     |                                    |                     |             |

# AddRoundKey, $\sigma_k$

| $a_{15}$ | $a_{11}$ | $a_7$ | $a_3$ |           | $k_0$    | $k_1$    | $k_2$    | $k_3$    | $a'_0$            | $a'_1$    | $a'_2$            | $a'_3$    |
|----------|----------|-------|-------|-----------|----------|----------|----------|----------|-------------------|-----------|-------------------|-----------|
| $a_{14}$ | $a_{10}$ | $a_6$ | $a_2$ | $\square$ | $k_4$    | $k_5$    | $k_6$    | $k_7$    | <br>$a'_4$        | $a'_5$    | $a_6'$            | $a'_7$    |
| $a_{13}$ | $a_9$    | $a_5$ | $a_1$ | $\square$ | $k_8$    | $k_9$    | $k_{10}$ | $k_{11}$ | $a'_8$            | $a'_9$    | $a_{10}^{\prime}$ | $a'_{11}$ |
| $a_{12}$ | $a_8$    | $a_4$ | $a_0$ |           | $k_{12}$ | $k_{13}$ | $k_{14}$ | $k_{15}$ | $a_{12}^{\prime}$ | $a'_{13}$ | $a'_{14}$         | $a'_{15}$ |

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>●00<br>○ | Conclusions |
|-----------------------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| Proper Mixing L                   | ayer                                    |                                    |                     |             |

# Proper Mixing Layer

## Definition

A linear map  $\psi$  is a proper mixing layer if it leaves no nontrivial, nonzero subspace W of V invariant, where  $W = \bigoplus_{i \in I} V_i$ ,  $V = \mathcal{M}_{m,n}(\operatorname{GF}(p^r)) = V_1 \oplus \cdots \oplus V_{mn}$ , and  $I \subsetneq \{1, \ldots, mn\}$ .

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers<br>00<br>0000 | Advanced Encryption Standard (AES) | Results<br>○●○<br>○ | Conclusions |
|-----------------------------------|-----------------------------------------|------------------------------------|---------------------|-------------|
| Proper Mixing L                   | ayer                                    |                                    |                     |             |

# ShiftRows Conditions

#### Theorem

The composition  $\rho \circ \pi$  is a proper mixing layer if and only if  $\rho$  properly mixes columns and for all  $k \in (1, ..., n-1)$ , there exists some  $c_i$  such that  $j_a \cdot c_a + \cdots + j_b \cdot c_b \equiv_n k$  for  $j_i \in \mathbb{N}$ .

・ロト ・四ト ・ヨト ・ヨト

| Introduction<br>0 | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results<br>00● | Conclusions |
|-------------------|---------------------------|------------------------------------|----------------|-------------|
| 000000            | 0000                      | 00000                              | 0              |             |
| Proper Mixing L   | ayer                      |                                    |                |             |

# MixColumns Conditions

#### Theorem

Let  $C \in M_{m,m}GF(p^r)$  be a circulant matrix with first row  $[c_1, c_2, \ldots, c_m]$ such that the only nonzero terms are indexed  $c_{i+1}$  for  $i \in I = \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ . Then C is a proper mixing matrix if and only if  $\langle I \rangle = \mathbb{Z}_m$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

| Introduction<br>0 | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results<br>00● | Conclusions |
|-------------------|---------------------------|------------------------------------|----------------|-------------|
| 000000            | 0000                      | 00000                              | 0              |             |
| Proper Mixing L   | ayer                      |                                    |                |             |

# MixColumns Conditions

#### Theorem

Let  $C \in M_{m,m}GF(p^r)$  be a circulant matrix with first row  $[c_1, c_2, \ldots, c_m]$ such that the only nonzero terms are indexed  $c_{i+1}$  for  $i \in I = \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ . Then C is a proper mixing matrix if and only if  $\langle I \rangle = \mathbb{Z}_m$ .

(日) (日) (日)

### Example

Example on Board

| Introduction<br>0<br>000000<br>00 | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results<br>○○○<br>● | Conclusions |
|-----------------------------------|---------------------------|------------------------------------|---------------------|-------------|
| Non-Surjective K                  | ey Schedule               |                                    |                     |             |

Non-Surjective Key Schedules

▶ Instead of surjectivity, we actually need  $T(V) \subset \langle T_s[k] : k \in \mathcal{K} \rangle$ .

### Theorem

If the key mapping function is onto a set of generators and the zero key, then  $T(V) \subset \langle T_s[k] : k \in \mathcal{K} \rangle$ .

## Conjecture

If  $T_s[k]$  is a generlized AES cipher with a proper mixing layer than the converse holds.

(日) (日) (日)

| Introduction | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------|---------------------------|------------------------------------|---------|-------------|
| 0            | 00<br>0000                | 00000                              | 000     |             |
| 00           |                           |                                    |         |             |

□ ▶ 《 臣 ▶ 《 臣 ▶

## Implications and future work

Analyze existing hash functions based on AES.

| Introduction | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------|---------------------------|------------------------------------|---------|-------------|
| 000000       | 0000                      | 00000                              | ō       |             |
|              |                           |                                    |         |             |

- Analyze existing hash functions based on AES.
- Construct future ciphers over more complicated fields.

| Introduction | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------|---------------------------|------------------------------------|---------|-------------|
| 000000       | 00<br>0000                | 00000                              | 000     |             |
| 00           |                           |                                    |         |             |

- Analyze existing hash functions based on AES.
- Construct future ciphers over more complicated fields.
- Prove the Non-surjectivity conjecture.

| Introduction<br>0<br>000000 | <b>Translation Based Ciphers</b> | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|-----------------------------|----------------------------------|------------------------------------|---------------------|-------------|
| 00                          |                                  |                                    |                     |             |

- Analyze existing hash functions based on AES.
- Construct future ciphers over more complicated fields.
- Prove the Non-surjectivity conjecture.
- Analyze the effects of using a Mixing Matrix with zero entries.

| Introduction<br>0<br>000000 | <b>Translation Based Ciphers</b> | Advanced Encryption Standard (AES) | Results<br>000<br>0 | Conclusions |
|-----------------------------|----------------------------------|------------------------------------|---------------------|-------------|
| 00                          |                                  |                                    |                     |             |

- Analyze existing hash functions based on AES.
- Construct future ciphers over more complicated fields.
- Prove the Non-surjectivity conjecture.
- Analyze the effects of using a Mixing Matrix with zero entries.
- Analyze the effects of using a key schedule surjective onto generators.

| Introduction<br>0 | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|-------------------|---------------------------|------------------------------------|---------|-------------|
| 000000            | 0000                      | 00000                              | 0       |             |
|                   |                           |                                    |         |             |

## Acknowledgements

### Boise State University and NSF DMS 1359425



・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

Cryptography: Key Issues in Security

| Introduction | Translation Based Ciphers | Advanced Encryption Standard (AES) | Results | Conclusions |
|--------------|---------------------------|------------------------------------|---------|-------------|
| 000000       | 0000                      | 00000                              | 0       |             |
|              |                           |                                    |         |             |

## References

- R. Aragona, A. Caranti, F. Dalla Volta, and M. Sala, On the group generated by the round functions of translation based ciphers over arbitrary finite fields, Finite Fields and Their Applications, Vol. 25 293-305, (2014).
- L. Babinkostova, K. Bombardier, M. Cole, T. Morrell, and C. Scott, Algebraic Structure of generalized Rijndael-like SP networks, Groups Complexity Cryptology, Vol. 6 Issue 1 37-54, (2014)
- R. Sparr, R. Wernsdorf, Group Theoretic Properties of Rijndael-like Ciphers, Discrete Applied Mathematics, 156(16): 3139-3149 (2008)