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AES Overview

1

My focus: Parity of SubBytes and MixColumns, followed by
1-round AES-like functions.

1
J. Daemen and V. Rijmen, AES submission document on Rijndael, Version 2, (1999)
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SubBytes

Recall that the plaintext can be represented as a matrix.

Definition

The function λ : Mm,n((GF (pr ))→ Mm,n((GF (pr )) is called a
SubBytes function if it is the parallel application of mn
bijective S-box-mappings λij : GF (pr )→ GF (pr ) defined by
λ(a) = b if and only if bij = λij(aij) for all
0 ≤ i < m, 0 ≤ j < n.

2

2
J. Daemen and V. Rijmen, AES submission document on Rijndael, Version 2, (1999)
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SubBytes

SubBytes puts each element in the matrix through an ‘S-box’
λij given by

λij(x) = ax−1 + b

where

a is a degree r − 1 polynomial

x−1 is the inverse of the element over GF (pr )

b is a fixed element of GF (pr ).

The S-box is usually implemented as a lookup table.
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SubBytes

Lemma

Let a be the fixed polynomial by which x−1 is multiplied in the
S-box. The SubBytes function λ is an odd permutation iff:

m and n are both odd, and

Each individual S-box λij is odd:

p ≡4 3, r is odd, and (pr − 1)/ |〈a〉| is odd, OR
either p ≡4 1 or r is even, and (pr − 1)/ |〈a〉| is even, OR
p = 2 and r > 1.
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MixColumns

Definition

ρ is a MixColumns function if it is an invertible linear
transformation over Mm,n(GF (pr )), ie, there is an invertible
matrix D ∈ Mm,m(GF (pr )) such that
ρ(x) = Dx , ∀x ∈ Mm,n(GF (pr )).

3

3
J. Daemen and V. Rijmen, AES submission document on Rijndael, Version 2, (1999)

Matt Cole SubBytes, MixColumns, and 1-round AES



MixColumns

The MixColumns function multiplies each column of the
state by an invertible matrix.

Alternatively, this function can be represented as
multiplication by a fixed polynomial over GF (pr ), mod
another fixed polynomial of degree m coprime to that one.

In classical AES, this polynomial is c(x) = 0x03x3

+ 0x01x2 + 0x01x + 0x02, and the modulus is
p(x) = x4 + 1.

Lemma

The MixColumns function ρ is an odd permutation if and only
if p and n are both odd, and (prm − 1)/ |〈c〉| is odd, where c
is the fixed polynomial of the MixColumns function ρ.
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1-round AES Functions

Definition

For any k ∈ K, a generalized 1-round AES permutation
T [k] : GF (pr )mn → GF (pr )mn is a permutation of the form
T [k] = σ [k] ◦ ρ ◦ π ◦ λ where
λ is a SubBytes function,
π is a ShiftRows function,
ρ is a MixColumns function, and
σ [k] is the AddRoundKey function with key k .

For the set of 1-round AES functions we write
τ := {T [k]|k ∈ K}.
For the group generated by τ we write Gτ := 〈τ〉.
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1-round AES Functions

Theorem

One-round classical AES generates the alternating group.a

a
R. Wernsdorf, The Round Functions of RIJNDAEL Generate the Alternating Group, 2002

Corollary

One-round classical AES is not a group.

Open problem: what group do general 1-round AES
permutations generate?

We suspect it is always the alternating or symmetric group.
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Tools: Transitivity

Let G be a permutation group over a set X .

Definition

G is transitive if ∀(a, b), a, b ∈ X , ∃σ ∈ G such that
σ(a) = b.

Lemma

The group generated by 1-round AES functions over
Mm,n(GF (2r )) is transitive ∀m, n, r .a

a
R. Sparr and R. Wernsdorf, Group Theoretic Properties of Rijndael-like ciphers, 2008

Lemma

The group generated by 1-round AES functions over
Mm,n(GF (pr )) is transitive ∀p,m, n, r .
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Current Work: `-Transitivity

Let G be a permutation group over a set X .

Can we use existing theorems to answer our conjecture?

Definition

G is `-transitive if ∀(ai , bi), ai , bi ∈ X , 1 ≤ i ≤ `, such that
aj 6= ak and bj 6= bk when j 6= k , ∃σ ∈ G such that
σ(ai) = bi .

Theorem

If G is a 2-transitive group of degree N containing a p-cycle
where p is prime and N/2 < p ≤ N − 3, then G is the
alternating or symmetric group. a

a
D. M. Rodgers, Generating and covering the alternating of symmetric group, Communications in Algebra,

2002
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Current Work: Primitivity

Let G be a permutation group over a set X .

Can we use existing theorems to answer our conjecture?

Definition

A set B = {b1, . . . , bk} ⊂ X is a block under G if ∀σ ∈ G ,
either σ(B) = B or σ(B) ∩ B = ∅.

Definition

G is primitive if @ any nontrivial block of X under G .
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