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Cryptographic systems are divided into two categories: In symmetric key schemes
the communicating entities first agree on keying material that is both secret and au-
thentic. In contrast to symmetric key schemes, public key schemes require only that
communicating entities exchange keying material that is authentic, but not secret.
Each of these cryptographic categories has advantages and disadvantages. Thus,
hybrid systems that benefit from the efficiency of symmetric key algorithms and the
functionality of public key algorithms are very common in practical deployments of
cryptography.

The two research projects offered are inspired by current commercially used
symmetric key and public key crypto systems. Each of these projects involves some
computational work to gather data and analytical work towards formulating general
conjectures about the fundamental structures that underly these projects as well
as developing new proof techniques.

Project 1: Elliptic Pair of primes

Elliptic curves have been studied by mathematicians since ancient times: In-
stances of the famous Bachet equation y? = 23 + b are considered in the writings of
Diophantus of Alexandria. Throughout the history of mathematics elliptic curves
have inspired important problems, or have figured in the solution of important prob-
lems. The final proof of Fermat’s last conjecture that the equation 2™ +y™ = 2" has
no nonzero integer solutions x, y and z when n > 2 is a recent example. Lenstra’s
very successful factoring algorithm based on elliptic curves is another example.

Elliptic curves entered the commercial world and gained wider popularity after
N. Koblitz and V. Miller independently proposed in 1985 to use elliptic curves to
design public-key cryptographic systems. Intensive research on the security and
efficient implementation of elliptic curve cryptography led in the 1990s to elliptic
curve crypto systems being commercially accepted and deployed. Today elliptic
curve groups is one of the major platforms in cryptography, and computational
complexity issues regarding elliptic curve groups continue to be of fundamental
interest. In particular: The security of elliptic curve based cryptographic systems
is connected to the order of the elliptic curve group.

In this project we investigate elliptic curve groups generated by the equations
of the form y? = 22 +b mod p or y* = 2% + ax mod p for integers a and b and
prime number p. Call a pair (p,q) with p < ¢ prime numbers an elliptic pair of
primes if there are integers by < p and by < ¢ such that the elliptic curve group
defined by y? = 23 + by over Zy has order g while, the elliptic curve group defined
by y? = x3 4 by has, over Z,, order p.

This is an ongoing research and collaboration with an undergraduate student.
Our preliminary investigation shows that for some prime numbers p there are several
prime numbers ¢ for which p and g form an elliptic pair, while for others there is
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only one prime number ¢ for which p and ¢ form an elliptic pair. More recently
we found new patterns leading to conjectural results about elliptic curve groups
of prime order generated by equations of the form 3? = 3 +b. Our conjectures
include: (1) Each integer b < p which produces a prime order is a primitive root of
p, if, and only if, exactly two such prime orders occur for the prime p; (2) If (p, q)
is an amicable pair of prime numbers, then p is congruent to ¢ modulo 4.

These experimental phenomena require closer study and eventually, mathemat-
ical proof. The students will start with generating more data that illustrate the
possibilities of these phenomena. The data will be examined for clues on why these
phenomena occur. Conjectures will arise from this analysis. Ultimately mathemat-
ical results, inspired by data-based observations, may be proven.

Elliptic pairs of primes have been independently discovered and investigated by
J. Silverman and K. Stange, who call these amicable pairs. In [7] they gave a conjec-
tural formulas for the frequency of amicable pairs. Students will also examine this
and other conjectures that emerge from the Silverman-Stange data and analysis.

Project 2: New algebraic structures of Rijndael (AES)

AES is a key-iterated block cipher: It encrypts and decrypts blocks of data
according to a secret key. The AES algorithm is a symmetric-key algorithm: The
same key is used for both encrypting and decrypting the data. Originally called
Rijndael, the AES cipher was developed by J. Daemen and V. Rijmen [3] in 1999.

AES is intended to replace DES (Data Encryption Standard) and Triple-DES,
the previous NIST standard for protecting sensitive official information. AES, like
DES, relies heavily on the ideas of Claude Shannon [6] and the concepts of diffusion
and confusion. The aim of diffusion is to spread the influence of all parts of the
inputs to a block cipher (the plaintext and the key) to all parts of the output
(ciphertext). The aim of confusion is to make the relationship between the plaintext,
ciphertext and key complicated.

The exploration of structural properties of a block cipher is important since it
can give insights about the security the cipher. For most types of block ciphers
it is common to investigate the algebraic structure of small scale variants of the
cipher to provide a fully understandable framework for the analysis of the full
cipher and its security. AES has a highly algebraic structure and could therefore
be more vulnerable to algebraic attacks. This motivates the growing interest in
investigating the structural and algebraic aspects of this cryptosystem. The cipher
round transformations in AES are based on operations of the Field Fas. Unlike for
DES [1], there are no known investigation field operations other than the operations
of the field F(2®) as a basis for AES. One of the goals of this project is to develop
a small scale variant of AES with round transformations based on the operations
on fields of form Fps, p > 2 and to investigate how this affect the security of the
cryptosystem.

It is known that the group theoretic properties of a block cipher such as short
cycles or small size of the group generated by the round transformations of the
cipher heavily affect the security of the cipher. The question of whether the set of
encryption functions is a group under functional composition is important: The an-
swer “yes” implies that there exists a successful known-plaintext attack. Moreover,
“yes” implies that multiple encryption is susceptible to the same attack because
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multiple encryption would be equivalent to single encryption. In [2] we were able
to prove that the set of encryption functions of 6-rounds DES over any finite group
(not just Zz) do not form a group. It is still not known whether the set of AES
encryptions form a group. A second point of research in this project will be to
attempt to answer this question.

It is known that it is not sufficient for a block cipher to be secure if the group
generated by the round functions of the cipher is large. It is important to know
the actual structure of the group that is generated. It is known that both DES and
AES generate the alternating group. In [2] we were able to provide conditions for
which the round functions of an n-round DES over a finite group does not generate
the alternating group. A third point of research in this project will be to attempt
to answer this question in general in the case of AES.
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