Skip to Main Content

Classical Selection Properties and Games

  1. F. Galvin, Indeterminacy of point-open gamesBull. Acad. Polon. Sci. 26 (1978), 445 – 448
  2. G. Gruenhage, Infinite games and generalizations of First-Countable spacesGeneral Topology and its Applications 6 (1976), 339 – 352
  3. G. Gruenhage, Games, covering properties and Eberlein compactsTopology and its Applications 23 (1986), 291 – 297.
  4. J. Pawlikowski, Undetermined sets of point-open gamesFundamenta Mathematicae 144 (1994), 279 — 285
  5. M. Scheepers, A direct proof of a theorem of TelgarskyProceedings of the American Mathematical Society 123 (1995), 3483 – 3485.
  6. M. Scheepers, Strong measure zero subsets of the real line and an infinite gameProceedings of the II Mathematical Conference in Pristina (1996), 61 – 65.
  7. M. Scheepers, The length of some diagonalization gamesArchive for Mathematical Logic (1999) 38, 103 – 122.
  8. M. Scheepers, W. Just, P. Szeptycki, J. Steprans, G-delta sets in topological spaces and games, Fundamenta Mathematicae 153 (1997) 41-58.
  9. M.Scheepers, P. Szeptycki, Some games related to perfect spaces, East West Journal of Mathematics, 2 (2000) 85-107.
  10. P.L. Sharma, Some characterizations of W-spaces and w-spacesGeneral Topology and its Applications 9 (1978), 289 – 293
  11. R. Telgarsky, Spaces defined by topological gamesFundamenta Mathematicae 88 (1975), 193 — 223
  12. R. Telgarsky, Spaces defined by topological games, IIFundamenta Mathematicae 116 (1983), 189 — 207
  13. R Telgarsky, On games of TopsoeMathematica Scandinavica 54 (1984), 170-176
  14. V.V. Tkachuk, Some new versions of an old gameComment. Math. Univ. Carolinae 36 (1995), 177 – 196

Back to Selection Principles in Mathematics — Research Papers main page