Big Ideas

- A **surface** in \mathbb{R}^3 is a 2-dimensional object in 3-space.
- Surfaces can be described using two variables. One way of doing this is to use a vector valued function (parameterization).
- Holding one parameter at a time constant while the other is allowed to vary gives rise to two families of **grid curves** (aka traces).
- Just as the line elements ds and dr are used to measure distance and direction of travel along a curve, **surface elements** dS and dS are used to measure area and the normal direction on a surface.

What We Are Doing Today . . .

So far, we have found ways to integrate over curves — scalar and vector line integrals.

Now, we want to be able to integrate over surfaces.

To do this, we will need to:

- Parameterize the surface — this gives us a way of writing our integral in terms of two variables (the parameters).
- Find a way to measure area on the surface — dS, called the **scalar surface element** — and combine that with a vector normal to the surface — dS, called the **vector surface element**.
Surfaces in \mathbb{R}^3

A surface in \mathbb{R}^3 is a 2-dimensional object sitting in 3-space.

Some examples of surfaces:

- Planes: $ax + by + cz = d$.
- Cylinders: $x^2 + y^2 = R^2$.
- Cones: $z = c\sqrt{x^2 + y^2}$.
- Spheres: $x^2 + y^2 + z^2 = R^2$.

Because surfaces are 2-dimensional, it makes sense that we should be able to express them in terms of two independent variables . . .

Some Surfaces are Graphs of Functions $z = f(x, y)$

For example:

- Planes: $z = D - Ax - By$.
- Cones: $z = c\sqrt{x^2 + y^2}$.
- Hemispheres: $z = \sqrt{R^2 - (x^2 + y^2)}$, or $z = -\sqrt{R^2 - (x^2 + y^2)}$.

Review for this Topic:

- Vector-valued functions/parametrized curves (sec 13.1).
- Partial derivatives (sec 14.3).
- Cylindrical and spherical coordinates (sec 15.8, 15.9).
Some Surfaces are Not Graphs of Functions
\[z = f(x, y) \]

For example:
- spheres: \[x^2 + y^2 + z^2 = R^2 \]
- cylinders: \[x^2 + y^2 = R^2, \quad a \leq z \leq b \]

Parameterizations of Surfaces

Surfaces can be parameterized using a vector function (called the parameterization):
\[r(u, v) = x(u, v) \hat{i} + y(u, v) \hat{j} + z(u, v) \hat{k} \]

- The variables \(u \) and \(v \) are called parameters.
- \(x(u, v), y(u, v), z(u, v) \) are called coordinate (or component) functions.

Parameterizations of Curves vs. Surfaces

Curve in \(\mathbb{R}^3 \):
\[r(t) = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k} \]
- Tells you where you are on the curve with respect to a single parameter \(t \).
- One parameter \(t \), because curves are one-dimensional.

Surface in \(\mathbb{R}^3 \):
\[r(u, v) = x(u, v) \hat{i} + y(u, v) \hat{j} + z(u, v) \hat{k} \]
- Tells you where you are on the surface with respect to two parameters \(u \) and \(v \).
- Two parameters \(u, v \), because surfaces are two-dimensional.
Example: Parameterization of Sphere

Equations:
\[x^2 + y^2 + z^2 = 9 \text{ (Cartesian)} \quad \rho = 3 \text{ (spherical)} \]

Cartesian Coordinates:
upper hemisphere: \[r_+(x, y) = x \hat{i} + y \hat{j} + \sqrt{9 - (x^2 + y^2)} \hat{k} \]
lower hemisphere: \[r_-(x, y) = x \hat{i} + y \hat{j} - \sqrt{9 - (x^2 + y^2)} \hat{k} \]

Spherical Coordinates:
\[r(\phi, \theta) = 3 \sin \phi \cos \theta \hat{i} + 3 \sin \phi \sin \theta \hat{j} + 3 \cos \phi \hat{k} \]

Grid Curves (Traces)

Suppose a surface \(S \) is parametrized by \(r(u, v) \).

The grid curves (or traces) of the parameterization are the two families of curves on \(S \) obtained by holding one parameter constant while allowing the other to vary.

Example: Grid Curves (Traces)

Grid curves of the \(xy \)-coordinate plane, parametrized using:
- Cartesian: \(r(x, y) = x \hat{i} + y \hat{j} + 0 \hat{k} \).
- Polar: \(r(r, \theta) = r \cos \theta \hat{i} + r \sin \theta \hat{j} + 0 \hat{k} \).

Grid curves of the cone \(z = \sqrt{x^2 + y^2} \), parametrized using:
- Cartesian: \(r(x, y) = x \hat{i} + y \hat{j} + \sqrt{x^2 + y^2} \hat{k} \).
- Polar: \(r(r, \theta) = r \cos \theta \hat{i} + r \sin \theta \hat{j} + r \hat{k} \).
Surface Elements

- The **scalar surface element** dS is the “area” of an infinitesimal rectangle on a surface S.
- The **vector surface element** $d\mathbf{S}$ is a vector normal to a surface S, with magnitude $dS = |d\mathbf{S}|$.
- The scalar surface element dS gives a measure of how much the area of an infinitesimal rectangle $dA = du \, dv$ changes under a parameterization $r(u, v)$.

Computing Surface Elements Given a Parametrization

$$r(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$

The differentials $dr_u = r_u(u, v) \, du$ and $dr_v = r_v(u, v) \, dv$ are tangent to the surface, lying along the grid curves, and form the sides of a parallelogram on the surface. By the properties of the cross product, $dr_u \times dr_v$ is normal to the surface, and $|dr_u \times dr_v|$ is the area of the parallelogram.

$$dS = dr_u \times dr_v = \left(r_u(u, v) \times r_v(u, v) \right) \, du \, dv$$

$$dS = |dS| = |dr_u \times dr_v| = \left| r_u(u, v) \times r_v(u, v) \right| \, du \, dv$$