A few notes:

- NCM = “Numerical Computing in MATLAB”, the textbook for the course.
- The first 2 homework problems are not really related to the discussion of computational math we have had in class, but are designed to get you comfortable (or uncomfortable) with more advance programming features in MATLAB.
- The completed homework assignment should be turned in to your shared dropbox folder in a subfolder labeled “HW2”. All work and code should be self-contained in one PDF file with the name “HW2_<YourMainFolderName>.pdf”. All code (M-files) for the problems should also be put in the folder so that I may run it to produce the results you present.

1. (Generating random numbers, 15pts) Using the Matlab `rand` command, generate an array of $N = 10^5$ random numbers x_i, $i = 1, 2, \ldots, N$ in the interval $[0, 1]$. Then, use the cumulative sum function `cumsum` to construct an array containing the “partial averages” s_1, s_2, \ldots, s_N defined as

$$s_n = \frac{1}{n} \sum_{i=1}^{n} x_i$$

(a) Plot s_n as a function of n and show that as n gets large, the average value of the first n random numbers in your array approaches $1/2$. To show this, add to your plot the line $y = 1/2$. Your plot should look like that shown in Figure 1.

(b) Add a title and axis labels to your plot.

![Plot of cumulative averages of a randomly distributed variable](image)

Figure 1: Problem 1: Plot of cumulative averages of a randomly distributed variable.

For this problem, you will need the functions `rand`, `cumsum`, `plot` and the colon (:) operator.
2. (Continued fractions, 25 pts) Continued fractions take the following form

\[
x = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \frac{1}{\ddots + \frac{1}{a_n}}}}},
\]

where \(a_1\) is an integer and \(a_2, a_3, \ldots, a_n\) are positive integers. Many of the most famous irrational numbers can be expressed as infinite continued fraction expansions. Truncating these expansions after a relatively few terms often gives an excellent approximation to the irrational number.

(a) Write a function that computes the continued fraction expansion for a given array (or vector) of numbers \(a_j, j = 1, 2, \ldots, n\). Your code should take as input an array containing the continued fraction coefficients \(a_j\) and return the value \(x\) using formula in (1).

(b) The continued fraction coefficients for \(\sqrt{2}\) are \(a_1 = 1\) and \(a_j = 2, j = 2, 3, \ldots\). Create an array containing these numbers for \(n = 20\) and use your function from part (a) to approximate \(\sqrt{2}\). Report the approximation you obtain to 16 digits and report the absolute error in the approximation.

(c) Use the Online Encyclopedia of Integer Sequences to find the integer sequence A003417 for the continued fraction coefficients that can be used to compute Euler’s number \(e\). Use these coefficients with your function from part (a) to approximate \(e\) to full machine precision (16 digits). Report your result and report the minimum \(n\) you need to use to obtain the approximation to full machine precision.

3. (Lambert W function, 20pts) Consider the following problem: Given a value of \(c \geq -1/e\), find the value of \(x\) such that

\[
xe^x = c.
\]

This is related to the Lambert W function, which has many applications (https://en.wikipedia.org/wiki/Lambert_W_function).

(a) Use Newton’s method to solve equation (2) for values of \(c \geq -1/e\) (Hint: solve the problem \(c - xe^x = 0\)). Produce three tables showing convergence for your method for \(c = 0.5\), \(c = 1\), and \(c = 10\) using the values produced by the function lambertw. Set the stopping criteria to \(\epsilon = 10^{-14}\). You may have to experiment around with making initial guesses.

(b) Now use fixed point iteration to also obtain a solution to the above equation (Hint: solve the problem \(x = ce^{-x}\)). Similar to part (a), produce three tables showing convergence for your method for \(c = 0.5\), \(c = 1\), and \(c = 10\). Set the stopping criteria to \(\epsilon = 10^{-14}\). You may again have to experiment around with making initial guesses.

(c) How do the methods compare in terms of convergence rates?

4. (Computing square roots, 15pts) The almost universally used algorithm to compute \(\sqrt{a}\), where \(a > 0\), is the recursion

\[
x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right),
\]

easily obtained by means of Newton’s method for the function \(f(x) = x^2 - a\). One potential problem with this method is that it requires a floating point division, which not all computer processors support, or which may too expensive for a particular application. For these reasons, it is advantageous to devise a method for computing the square root that only uses addition, subtraction, multiplication, and division by 2 (which can be easily done by shifting the binary representation one bit to the right). The trick for doing this is to use Newton’s
method to compute $\frac{1}{\sqrt{a}}$, and then obtain \sqrt{a} by multiplying by a. Write down your recursion formula for computing $\frac{1}{\sqrt{a}}$ in a manner similar to (3). This formula should only involve addition/subtraction, multiplication and division by 2.

Try you algorithm on the problem of computing $\sqrt{5}$. As an initial guess use $x_0 = 0.5$. Report the values of x_0, x_1, \ldots, x_5 in a nice table and verify that your algorithm is working by comparing these numbers to the true value of $\sqrt{5}$.

To see where this sort of software assisted acceleration is used in gaming, see the course webpage for a link to the article: Origin of Quake3’s Fast InvSqrt().

5. (Using fzero, 15pts)

(a) Consider the Colebrook equation for the friction factor in a fully developed pipe flow

$$\frac{1}{\sqrt{f}} = -2 \log_{10} \left(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re_D\sqrt{f}} \right)$$

where f is the Darcy friction factor, ϵ/D is the relative roughness of the pipe material, and Re is the Reynolds number based on a pipe diameter D. Use fzero to find the friction factor f corresponding to parameter values $\epsilon/D = 0.0001$ and $Re_D = 3 \times 10^5$. Use a tolerance 10^{-8} with fzero. In your homework write-up give the value of f as well as the code you used to solve the problem. Do not include the fzero code just how you called it.

Hint: Use the function optimset to set up the tolerance TolX.

(b) David Peters (SIAM Review, 1997) obtains the following equation for the optimum damping ratio of a spring-mass-damper system designed to minimize the transmitted force when an impact is applied to the mass:

$$\cos \left[4\zeta \sqrt{1-\zeta^2} \right] = -1 + 8\zeta^2 - 8\zeta^4$$

Use fzero to find the $\zeta \in [0,0.5]$ that satisfies this equation with a tolerance 10^{-12}. In your homework write-up give the value of ζ as well as the code you used to solve the problem. Do not include the fzero code just how you called it.

6. (Freezing water mains, 10pts) NCM 4.16. The function erf in this problem is called the error function and is available in MATLAB using erf. Also, you can use fzero instead of fzero to solve this problem.

7. (Using fminbnd, 15 pts) The orbits of Mercury and Earth can be (ideally) parameterized with respect to time as follows:

Mercury

$$x_m(t) = -11.9084 + 57.9117 \cos(2\pi t/87.97)$$

$$y_m(t) = 56.6741 \sin(2\pi t/87.97)$$

Earth

$$x_e(t) = -2.4987 + 149.6041 \cos(2\pi t/365.25)$$

$$y_e(t) = 149.5832 \sin(2\pi t/365.25)$$

The units on the position are in 10^6km and the units on time are days. The coordinate system has been arranged so that the sun is at the center.

(a) Use the function fminbnd to determine a time between 0 and 1000 for which the distance between the Earth and Mercury is minimal. Report this time and plot the two orbits together with the positions when the distance is at a minimum clearly marked on the curves. Is the time you found the global minimum over the interval $0 \leq t \leq 1000$, or just a local minimum? Explain how you determined this with, for example, some kind of plot.

(b) Repeat part (a), but now find a time for which the distance is maximal. Report this value and produce a similar plot to part (a) with the positions marked.