Pencils and Erasers Only – No Calculators Allowed.

1. Set up the differential equation and initial conditions for \(y(t) \), the amount (in pounds) of salt in the tank (below) \(t \) minutes after the start time.

A huge tank initially holds 500 gallons of a solution containing 2 pounds of salt per gallon of solution.

At start time, solution containing 1 pound of salt per gallon begins to run into the tank at 10 gallons/minute. Simultaneously mixed solution is pumped out of the tank at 7 gallons/minute.

Do not solve this initial-value problem – just set it up.
2. It is alleged that \(y_1(x) = x^4 \) and \(y_2(x) = \ln(x) y_1(x) \) are solutions of
\[
x^2 y'' - 7xy' + 16y = 0
\]
on \((0, \infty)\). Compute their Wronskian.