Math 175-004
Calculus II
Spring 2008 (MTuWTh 12:40-1:30pm, MG 139)

Instructor: Dr. Grady Wright Phone: 426-4674
Office: MG-220A E-mail: wright@math.boisestate.edu
Office Hours: MTuW 1:35-3:00pm, or by appointment

Course webpage: http://math.boisestate.edu/~wright/courses/m175/
Homework assignments, exam review notes, announcements, and the course schedule will be posted on the course webpage. So, check it on a daily basis.

Prerequisites: Calculus I (M170) or equivalent

Schedule: We will cover all sections of Chapters 6-9.

Homework: Consistently doing and understanding the homework is the very best way to learn Calculus. Homework is assigned on a daily basis and is posted on the course webpage; it is collected every Thursday (except during spring break). Homework assignments consist of several problems from each of the sections we cover. While it is expected that you do all the homework problems, they will not be directly graded, but will be looked over for completeness.

Late homework is accepted up to 24 hours after the due date for half the credit. Beyond this time period, late homework will not be accepted unless there are extraordinary circumstances.

Collaboration: Collaboration is part of the real world and therefore permitted for all homework assignments, BUT NOT ON QUIZES OR EXAMS. However, each student is responsible for turning in their own written solutions to the problems. Straight copying of another students work will result in a zero on that assignment for all parties involved.

Quizes: Every Thursday there will be a 10 to 15 minute quiz at the beginning of class. It will consist of one problem taken directly from the homework that is due that day. No make-up quizzes will be given. Your lowest two quiz scores will be dropped.

In-class group work: Throughout the semester there will be group work assigned during class. This work may or may not be graded, but your participation will always be recorded either through your group handing in the worksheet, or demonstrating your solution to the rest of the class. In-class group work cannot be made-up.

Midterm exams: There will be three in-class midterm exams. The tentative schedule for these is:
- Thursday, February 14, 2008
- Tuesday, March 11, 2007
- Thursday, April 24, 2007
Taking these exams at any other time than what is specified is not allowed, unless there are physician documented health reasons or other documented family difficulties explaining your situation.
Final Exam: The final exam will be comprehensive and will take place Monday May 12, 2008 1:00pm-3:00pm. No early or late exams will be given.

Technology: The use of calculators or notebook computers is permitted for homework and in-class group work, but not on quizzes or exams. We will make periodic trips to the computer lab to make use of the mathematical software Maple.

Grading policy: The breakdown for the final course grade is as follows:
- Homework: 5%
- Quizzes: 25%
- In-class group work: 5%
- Midterm 1: 35/3%
- Midterm 2: 35/3%
- Midterm 3: 35/3%

Final (Monday May 12, 2008 1:00pm-3:00pm): 30%
Your grade will be determined from the standard percentages.

Tutoring: Free “drop-in” tutoring is available for this course through Academic Support Services. You may also obtain a list of private “for-hire” tutors there. Go to http://tutoring.boisestate.edu/mdic.shtml for more information.

Important dates:
- Feb. 4 – last day to register; add classes; change from credit to audit or audit to credit; and last day to drop classes without a “W” and receive a refund.
- Mar. 3 – last day to drop classes or completely withdraw.
- May 9 – Classes end
- May 12 – Final exam, 1:00pm-3:00pm

Academic honesty: All students are expected to be familiar with and adhere to the policies and standards given in the BSU Student Code of Conduct (http://www2.boisestate.edu/studentconduct/Student%20Code%20of%20Conduct.htm)

Learning objectives: The learning objectives for this course set down by the Department of Mathematics are the following:
- Be adept at finding antiderivatives in the easy cases.
- Be able to use tables to find antiderivatives for more difficult cases.
- Set up as definite integrals those common application problems involving volumes of rotation, arc length, surface area, work.
- Have an understanding of separable differential equations.
- Have an intuitive understanding of the definitions of limit of a sequence and sum of an infinite series.
- Be able to find intervals of convergence of power series using ratio, root, comparison, and integral tests.
- Have an understanding of polar coordinates and the calculus of functions described in those coordinates.