1. For the graph of f and its derivative on the next page do the following:

(a) Mark the zeros of f' and the local extrema of f;
(b) Mark the local extrema of f' and the inflection points of f;
(c) Between each of the extrema of f', label the sign of f'';
(d) Label the intervals where f is concave up and concave down;
(e) At each of the zeros of f', label the sign of f'' on the graph of f;
(f) Classify the local extrema of f;
(g) Determine the absolute extrema of f;
The graph shows two functions, $f(x)$ and $f'(x)$, plotted against the variable x. The function $f(x)$ oscillates between different values, while $f'(x)$ represents the derivative, showing the rate of change of $f(x)$ with respect to x. The plots are on a Cartesian coordinate system with y-axis values ranging from -2 to 4 and x-axis values ranging from 0 to 9. The graph provides a visual representation of the relationship between x and the values of $f(x)$ and $f'(x)$.
2. Let \(f(x) = (x^2 - 1)^3 \). Find the following: (a) the intervals where \(f \) is increasing and decreasing; (b) the local extrema of \(f \), including their type and location; (c) the intervals of concavity; (d) the x-coordinates of the points of inflection.
3. Let \(f(x) = x\sqrt{x^4 + 1} \). Find the following: (a) the intervals where \(f \) is increasing and decreasing; (b) the local extrema of \(f \), including their type and location; (c) the intervals of concavity; (d) the \(x \)-coordinates of the points of inflection.