1. Compute the following derivatives:

(a) \(\frac{d}{dx} [(1 + \cos^2 x)^2] \)

(b) \(\frac{d}{dt} \left[\sqrt{\sin \sqrt{t}} \right] \)

(c) \(\frac{d}{dx} \left[\sin^{-1} (x^2 - 1) \right] \)

(d) \(\frac{d}{dx} \left[\tan^{-1} (e^x) \right] \)

(e) \(\frac{d}{dx} \left[\ln \left(\frac{1}{\cos x + 1} \right) \right] \)
2. Use implicit differentiation to compute $\frac{dy}{dx}$ for the following equations:

(a) $x\sqrt{1+y} + y\sqrt{1+2x} = 2x$

(b) $x\sin y + \cos 2y = \cos y$

(c) $xy = \tan^{-1}(xy)$

(d) $e^y = \ln(xy)$
3. Use logarithmic differentiation to compute the derivatives of the following functions with respect to \(t \).

(a) \(f(t) = \sqrt{\frac{t + 1}{t + 2}} \)

(b) \(f(t) = \frac{1}{t(t + 1)(t + 2)(t + 3)} \)
4. The frequency of vibrations of a vibrating violin string is given by

\[f = \frac{1}{2L} \sqrt{\frac{T}{\rho}} \]

where \(L \) is the length of the string, \(T \) is the tension, and \(\rho \) is its linear density. Find the rate of change of the frequency with respect to

(a) the length (when \(T \) and \(\rho \) are constant)

(b) the tension (when \(L \) and \(\rho \) are constant)

(c) the linear density (when \(T \) and \(L \) are constant)