López-Escobar's theorem and metric structures

Descriptive set theory and its applications AMS Western section meeting Salt Lake, April 2016

Samuel Coskey

Boise State University

Presenting joint work with Martino Lupini

The space of countable structures

Definition

If \mathcal{L} is a countable relational language with symbols R_i of arity n_i , then we define the space of countable \mathcal{L} -structures

$$\mathsf{Mod}(\mathcal{L}) = \prod \mathcal{P}(\mathbb{N}^{n_i}).$$

Definition

The Polish group S_{∞} of permutations of \mathbb{N} acts naturally on $\operatorname{Mod}(\mathcal{L})$ by translating the subsets of \mathbb{N}^{n_i} ; we call this the logic action.

The orbits of the logic action are precisely the isomorphism equivalence classes.

López-Escobar's theorem

First we observe the following

Fact

Given any \mathcal{L} -theory T, the subset $\mathsf{Mod}(T) \subset \mathsf{Mod}(\mathcal{L})$ consisting of the models of T is Borel. The same is true of $\mathsf{Mod}(\phi)$, where ϕ is a sentence of $\mathcal{L}_{\omega_1\omega}$.

Definition

Here if \mathcal{L} is any language, $\mathcal{L}_{\omega_1\omega}$ denotes the extension of first-order logic in which countable conjunctions and disjunctions are allowed. (We require formulas to have finitely many free variables.)

López-Escobar's theorem

If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and isomorphism-closed then there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that $X = \mathsf{Mod}(\phi)$.

Dynamical proof of López-Escobar

López-Escobar's theorem

If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and isomorphism-closed then there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that $X = \mathsf{Mod}(\phi)$.

Proof idea

If $X \subset \operatorname{Mod}(\mathcal{L})$ lies in the Borel hierarchy then X is approximated by simpler sets. Unfortunately the simpler sets will not be isomorphism-closed. We thus look for a stronger statement which applies even to sets X which are not isomorphism-closed.

Definition

If $X \subset \mathsf{Mod}(\mathcal{L})$ and $\bar{a} \in (\mathbb{N})^k$ then the Vaught transform $X^{*\bar{a}}$ is the set $\{M \mid \forall^* g \in \mathcal{S}_{\infty}(\bar{a} \subset g \implies gM \in X)\}$.

Theorem

If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and $k \in \mathbb{N}$, then there is a formula ϕ of $\mathcal{L}_{\omega_1\omega}$ with k free variables such that $M \in X^{*\bar{a}} \iff \phi^M(\bar{a})$.

Vaught's conjecture

VC, the Vaught conjecture for $\mathcal{L}_{\omega_1\omega}$

For any sentence ϕ of $\mathcal{L}_{\omega_1\omega}$, the subset $\mathsf{Mod}(\phi) \subset \mathsf{Mod}(\mathcal{L})$ consisting of the models of ϕ has either countably many or perfectly many isomorphism classes.

The role of the logic action leads to the dynamical variant of Vaught's conjecture:

$\mathsf{TVC}(S_\infty)$, the topological Vaught conjecture for S_∞

Any standard Borel S_{∞} -space has countably many or perfectly many orbits.

Theorem

VC is equivalent to $\mathsf{TVC}(S_{\infty})$.

Proof of the equivalence using López-Escobar

Theorem

VC is equivalent to $TVC(S_{\infty})$.

Proof.

- (\Leftarrow) This is simply because $Mod(\phi)$ is Borel.
- (⇒) Let X be a standard Borel S_{∞} -space.
 - By Becker–Kechris, there exists L and a Borel S_∞-embedding
 i: X → Mod(L). Note that *i*(X) is Borel and
 isomorphism-closed.
 - By López-Escobar's theorem there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that $i(X) = \mathsf{Mod}(\phi)$.
 - By the $\mathcal{L}_{\omega_1\omega}$ -VC, the image i(X) has countably or perfectly many isomorphism types.
 - Hence X has countably many or perfectly many orbits.

Metric structures

We now seek analogs of López-Escobar's theorem and its applications within the beautiful theory of metric structures and continuous logic.

Definition

A relational metric structure consists of:

- A complete metric space (M, d) of diameter 1
- Relations $R_i \colon M^{n_i} \to [0,1]$, each uniformly continuous (the modulus of continuity is specified in the language)

Motivation

The R_i are grey sets. If $R_i(\bar{a}) = 0$ then \bar{a} is surely in R_i , and if $R_i(\bar{a}) > 0$ then its value measures the failure.

The space of separable metric structures

We will confine ourselves to metric structures whose underlying metric space is the Urysohn sphere \mathbb{U} , that is, the universal ultrahomogeneous separable metric space of diameter 1.

Definition

If \mathcal{L} is a countable metric language with symbols R_i of arity n_i and modulus Δ_i , then we define the space of separable \mathcal{L} -structures

$$\mathsf{MMod}(\mathcal{L}) = \prod \mathsf{Unif}_{\Delta_i}(\mathbb{U}^{n_i}, [0, 1]).$$

Here $\operatorname{Unif}_{\Delta}(X,Y)$ denotes the space of Δ -uniformly continuous functions from X to Y with the topology of pointwise convergence.

Remark

The Polish group $\mathsf{Iso}(\mathbb{U})$ of isometric bijections of \mathbb{U} acts naturally on $\mathsf{MMod}(\mathcal{L})$, and its orbits are the isomorphism classes.

López-Escobar's theorem for metric structures

The formulas of continuous logic consist of relational symbols, continuous combinations, and the quantifiers \sup_x and \inf_x . The formulas of continuous $\mathcal{L}_{\omega_1\omega}$ additionally consist of \sup_n and \inf_n .

Fact

For any sentence ϕ of $\mathcal{L}_{\omega_1\omega}$, the evaluation map $M \mapsto \phi^M$ is Borel.

Theorem (López-Escobar for MMod)

If $X : \mathsf{MMod}(\mathcal{L}) \to [0,1]$ is a Borel and isomorphism-invariant grey set, then there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that for all $M \in \mathsf{MMod}(\mathcal{L})$ we have $X(M) = \phi^M$.

Remark

If X is 0,1-valued we can additionally ensure that ϕ is 0,1-valued. It follows that if X is a Borel and invariant true subset of $\mathsf{MMod}(\mathcal{L})$ then X is axiomatized by a sentence of $\mathcal{L}_{\omega_1\omega}$.

Grey transforms

As in Vaught's proof of López-Escobar's theorem, we isolate a stronger version which applies to grey sets that are not necessarily invariant.

Vaught transform

$$X^{*\bar{a}} = \{ M \mid \forall^* g \in S_{\infty}(\bar{a} \subset g \implies gM \in X) \}$$

Grey transform

$$X^{*\bar{a}}(M) = \sup_{g} [X(gM) - d(\bar{e}, g\bar{a})]$$

where e_1, e_2, \ldots is a fixed dense sequence in \mathbb{U} .

Idea of proof of López-Escobar for metric structures

To prove classical López-Escobar, we used the strengthening:

Theorem

If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and $k \in \mathbb{N}$, then there is a formula ϕ of $\mathcal{L}_{\omega_1\omega}$ with k free variables such that for all $\bar{a} \in (\mathbb{N})^k$ we have $M \in X^{*\bar{a}} \iff \phi^M(\bar{a})$.

With the grey transform in hand, we can state the analogous strengthening for metric structures:

Theorem

If $X : \mathsf{MMod}(\mathcal{L}) \to [0,1]$ is a Borel grey set and $k \in \mathbb{N}$, then there is a formula ϕ of continuous $\mathcal{L}_{\omega_1\omega}$ with k free variables such that for all $\bar{\mathsf{a}} \in (\mathbb{U})^k$ we have $X^{*\bar{\mathsf{a}}}(M) = \phi^M(\bar{\mathsf{a}})$.

Vaught's conjecture, again

Continuous VC

Vaught's conjecture for subclasses of $\mathsf{MMod}(\mathcal{L})$ axiomatized by sentence of continuous $\mathcal{L}_{\omega_1\omega}$

TVC

For any Polish group G, Vaught's conjecture holds for all standard Borel G-spaces.

Corollary

The continuous VC is equivalent to the TVC.

Proof idea

In the previous proof we used Becker–Kechris plus López-Escobar's theorem. In this proof we use an analog of Becker–Kechris plus López-Escobar's theorem for metric structures.

Thank you!