López-Escobar's theorem and metric structures Descriptive set theory and its applications AMS Western section meeting Salt Lake, April 2016 Samuel Coskey Boise State University Presenting joint work with Martino Lupini # The space of countable structures #### Definition If \mathcal{L} is a countable relational language with symbols R_i of arity n_i , then we define the space of countable \mathcal{L} -structures $$\mathsf{Mod}(\mathcal{L}) = \prod \mathcal{P}(\mathbb{N}^{n_i}).$$ #### Definition The Polish group S_{∞} of permutations of \mathbb{N} acts naturally on $\operatorname{Mod}(\mathcal{L})$ by translating the subsets of \mathbb{N}^{n_i} ; we call this the logic action. The orbits of the logic action are precisely the isomorphism equivalence classes. # López-Escobar's theorem First we observe the following #### Fact Given any \mathcal{L} -theory T, the subset $\mathsf{Mod}(T) \subset \mathsf{Mod}(\mathcal{L})$ consisting of the models of T is Borel. The same is true of $\mathsf{Mod}(\phi)$, where ϕ is a sentence of $\mathcal{L}_{\omega_1\omega}$. #### Definition Here if \mathcal{L} is any language, $\mathcal{L}_{\omega_1\omega}$ denotes the extension of first-order logic in which countable conjunctions and disjunctions are allowed. (We require formulas to have finitely many free variables.) ### López-Escobar's theorem If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and isomorphism-closed then there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that $X = \mathsf{Mod}(\phi)$. # Dynamical proof of López-Escobar ### López-Escobar's theorem If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and isomorphism-closed then there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that $X = \mathsf{Mod}(\phi)$. #### Proof idea If $X \subset \operatorname{Mod}(\mathcal{L})$ lies in the Borel hierarchy then X is approximated by simpler sets. Unfortunately the simpler sets will not be isomorphism-closed. We thus look for a stronger statement which applies even to sets X which are not isomorphism-closed. #### Definition If $X \subset \mathsf{Mod}(\mathcal{L})$ and $\bar{a} \in (\mathbb{N})^k$ then the Vaught transform $X^{*\bar{a}}$ is the set $\{M \mid \forall^* g \in \mathcal{S}_{\infty}(\bar{a} \subset g \implies gM \in X)\}$. #### **Theorem** If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and $k \in \mathbb{N}$, then there is a formula ϕ of $\mathcal{L}_{\omega_1\omega}$ with k free variables such that $M \in X^{*\bar{a}} \iff \phi^M(\bar{a})$. # Vaught's conjecture ### VC, the Vaught conjecture for $\mathcal{L}_{\omega_1\omega}$ For any sentence ϕ of $\mathcal{L}_{\omega_1\omega}$, the subset $\mathsf{Mod}(\phi) \subset \mathsf{Mod}(\mathcal{L})$ consisting of the models of ϕ has either countably many or perfectly many isomorphism classes. The role of the logic action leads to the dynamical variant of Vaught's conjecture: # $\mathsf{TVC}(S_\infty)$, the topological Vaught conjecture for S_∞ Any standard Borel S_{∞} -space has countably many or perfectly many orbits. ### **Theorem** *VC* is equivalent to $\mathsf{TVC}(S_{\infty})$. # Proof of the equivalence using López-Escobar #### Theorem *VC* is equivalent to $TVC(S_{\infty})$. #### Proof. - (\Leftarrow) This is simply because $Mod(\phi)$ is Borel. - (⇒) Let X be a standard Borel S_{∞} -space. - By Becker–Kechris, there exists L and a Borel S_∞-embedding *i*: X → Mod(L). Note that *i*(X) is Borel and isomorphism-closed. - By López-Escobar's theorem there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that $i(X) = \mathsf{Mod}(\phi)$. - By the $\mathcal{L}_{\omega_1\omega}$ -VC, the image i(X) has countably or perfectly many isomorphism types. - Hence X has countably many or perfectly many orbits. ### Metric structures We now seek analogs of López-Escobar's theorem and its applications within the beautiful theory of metric structures and continuous logic. #### Definition A relational metric structure consists of: - A complete metric space (M, d) of diameter 1 - Relations $R_i \colon M^{n_i} \to [0,1]$, each uniformly continuous (the modulus of continuity is specified in the language) #### Motivation The R_i are grey sets. If $R_i(\bar{a}) = 0$ then \bar{a} is surely in R_i , and if $R_i(\bar{a}) > 0$ then its value measures the failure. # The space of separable metric structures We will confine ourselves to metric structures whose underlying metric space is the Urysohn sphere \mathbb{U} , that is, the universal ultrahomogeneous separable metric space of diameter 1. #### Definition If \mathcal{L} is a countable metric language with symbols R_i of arity n_i and modulus Δ_i , then we define the space of separable \mathcal{L} -structures $$\mathsf{MMod}(\mathcal{L}) = \prod \mathsf{Unif}_{\Delta_i}(\mathbb{U}^{n_i}, [0, 1]).$$ Here $\operatorname{Unif}_{\Delta}(X,Y)$ denotes the space of Δ -uniformly continuous functions from X to Y with the topology of pointwise convergence. #### Remark The Polish group $\mathsf{Iso}(\mathbb{U})$ of isometric bijections of \mathbb{U} acts naturally on $\mathsf{MMod}(\mathcal{L})$, and its orbits are the isomorphism classes. ### López-Escobar's theorem for metric structures The formulas of continuous logic consist of relational symbols, continuous combinations, and the quantifiers \sup_x and \inf_x . The formulas of continuous $\mathcal{L}_{\omega_1\omega}$ additionally consist of \sup_n and \inf_n . #### **Fact** For any sentence ϕ of $\mathcal{L}_{\omega_1\omega}$, the evaluation map $M \mapsto \phi^M$ is Borel. ### Theorem (López-Escobar for MMod) If $X : \mathsf{MMod}(\mathcal{L}) \to [0,1]$ is a Borel and isomorphism-invariant grey set, then there exists a sentence ϕ of $\mathcal{L}_{\omega_1\omega}$ such that for all $M \in \mathsf{MMod}(\mathcal{L})$ we have $X(M) = \phi^M$. #### Remark If X is 0,1-valued we can additionally ensure that ϕ is 0,1-valued. It follows that if X is a Borel and invariant true subset of $\mathsf{MMod}(\mathcal{L})$ then X is axiomatized by a sentence of $\mathcal{L}_{\omega_1\omega}$. # Grey transforms As in Vaught's proof of López-Escobar's theorem, we isolate a stronger version which applies to grey sets that are not necessarily invariant. ### Vaught transform $$X^{*\bar{a}} = \{ M \mid \forall^* g \in S_{\infty}(\bar{a} \subset g \implies gM \in X) \}$$ ### Grey transform $$X^{*\bar{a}}(M) = \sup_{g} [X(gM) - d(\bar{e}, g\bar{a})]$$ where e_1, e_2, \ldots is a fixed dense sequence in \mathbb{U} . # Idea of proof of López-Escobar for metric structures To prove classical López-Escobar, we used the strengthening: #### Theorem If $X \subset \mathsf{Mod}(\mathcal{L})$ is Borel and $k \in \mathbb{N}$, then there is a formula ϕ of $\mathcal{L}_{\omega_1\omega}$ with k free variables such that for all $\bar{a} \in (\mathbb{N})^k$ we have $M \in X^{*\bar{a}} \iff \phi^M(\bar{a})$. With the grey transform in hand, we can state the analogous strengthening for metric structures: #### **Theorem** If $X : \mathsf{MMod}(\mathcal{L}) \to [0,1]$ is a Borel grey set and $k \in \mathbb{N}$, then there is a formula ϕ of continuous $\mathcal{L}_{\omega_1\omega}$ with k free variables such that for all $\bar{\mathsf{a}} \in (\mathbb{U})^k$ we have $X^{*\bar{\mathsf{a}}}(M) = \phi^M(\bar{\mathsf{a}})$. # Vaught's conjecture, again #### Continuous VC Vaught's conjecture for subclasses of $\mathsf{MMod}(\mathcal{L})$ axiomatized by sentence of continuous $\mathcal{L}_{\omega_1\omega}$ #### **TVC** For any Polish group G, Vaught's conjecture holds for all standard Borel G-spaces. ### Corollary The continuous VC is equivalent to the TVC. #### Proof idea In the previous proof we used Becker–Kechris plus López-Escobar's theorem. In this proof we use an analog of Becker–Kechris plus López-Escobar's theorem for metric structures. Thank you!