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Classification problems in mathematics

What is classification?
Classification means explicitly finding invariants that completely
determine the objects up to equivalence.

• The objects are presented in a concrete way. (A group by its
multiplication table, a graph by its incidence relation, etc.)

• The equivalence is an equivalence relation on the space of
objects. (Isomorphism, isometry, conjugacy, etc.)

• Explicit means the mapping from object to invariant is
reasonably explicit. (We use Borel definability.)

Remark
The approach dates to the 1990s and has gained prominence
thanks in part to an number of striking applications.
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Formal definition

Definition
If E is an equivalence relation on a standard Borel space X , we say
E is completely classifiable if there is a Borel function f : X → R
satisfying

x E x ′ ⇐⇒ f (x) = f (x ′)

Example

The finitely generated abelian groups are classified up to
isomorphism by a code for the sequence of cyclic factors in the
primary decomposition.

Example

The countable divisible groups are classified up to isomorphism by
f (G ) = the sequence which gives the number of copies of Q and
Z/p∞Z for all p.

The complexity of classification problems Samuel Coskey (Boise State University)



Borel complexity theory Countable groups Automorphisms Metric structures

Relative complexity

Definition
If E ,F are equivalence relations on standard Borel spaces X ,Y , we
say E is Borel reducible to F (written E ≤B F ) if there is a Borel
function f : X → Y satisfying

x E x ′ ⇐⇒ f (x) F f (x ′)

Motivation
We interpret E ≤B F as: the classification up to E -equivalence is
no harder than the classification up to F -equivalence.

Remark
It is necessary that we impose a definability constraint on the
reduction functions. The slogan is that Borel = Explicit.
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A map of benchmark complexities
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A map of naturally occurring classifications

finitely generated abelian groups

elliptic curves

vitali equivalence

finitely generated groups

countable graphs measure equivalence

compact metrizable spaces

separable C*-algebras

separable Banach spaces

countable torsion groups
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Countable groups
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Torsion-free abelian groups

Definition
A group A is torsion-free abelian if it is isomorphic to a subgroup
of some power Qn.

The least possible such n is called the rank of A (it may be
infinite).

Theorem (Baer, 1937)

The torsion-free abelian groups of rank 1 are classified by the
sequence of p-heights of one of its elements (up to a finite error).

Remark
In our setting, this can be viewed as an E0 classification.
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Chain

Kurosh (1937) and Mal’cev (1938) independently generalized
Baer’s work to higher ranks. But the classification was regarded as
unsatisfactory, because the invariants were themselves complicated.

Question
Is there a satisfactory classification of torsion-free abelian groups of
finite rank?

Theorem (Hjorth 1998, Thomas 2002)

The classification problem for torsion-free abelian groups increases
strictly in Borel complexity with the rank:

R1 <B R2 <B R3 <B · · ·
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Antichain

Within a fixed rank, it is possible to categorize the torsion-free
abelian groups by their divisibility properties.

Definition
A torsion-free abelian group is said to be p-local if it is (infinitely)
divisible by every prime q 6= p.

Theorem (Thomas, 2003)

If p, q are distinct primes, then the classification problems for
p-local and q-local torsion-free abelian groups of fixed finite rank
are incomparable:

Rn,p ⊥B Rn,q
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Quasi-isomorphism

It is also natural to work with the following coarser classification.

Definition
Torsion-free abelian groups A,B are quasi-isomorphic if they are
isomorphic up to a finite index error (there exist finite-index
subgroups A′,B ′ of A,B such that A′ ∼= B ′.)

Motivation

• While torsion-free abelian groups need not admit a unique
decomposition into irreducible groups, they always have a
quasi-unique quasi-decomposition.

• The quasi-isomorphism relation arises in an auxiliary fashion in
the work of Kurosh, Mal’cev, and of Hjorth, Thomas.
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Incomparable problems

Question
Is it simpler to classify the torsion-free abelian groups up to
isomorphism or up to quasi-isomorphism?

Theorem (C–)

The isomorphism and quasi-isomorphism problems on torsion-free
abelian groups of finite rank are incomparable with respect to
Borel reducibility.

Remark
This was perhaps the first incomparability result, within this level
of the hierarchy, when no obvious invariant (such as the prime p)
is available to distinguish the two relations.
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Automorphisms

• •

• •

•

• •
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•

• •
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The conjugacy problem for automorphisms

Definition
Let M be any countable structure (group, graph, etc).
Automorphisms φ, ψ ∈ Aut(M) are conjugate if there exists
α ∈ Aut(M) such that ψ = αφα−1.

Motivation
Classifying automorphisms up to conjugacy is analogous to writing
the class equation in the case of a finite structure.

Example

The cube has five conjugacy classes: identity, 90◦ rotations, 120◦

rotations, 180◦ rotations about a face, and 180◦ rotations about
an edge (and several more if reflections are allowed).
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Homogeneous structures

We will investigate the conjugacy problem for structures with very
rich automorphism groups.

Definition
A structure A is called homogeneous if for every finite subset
A0 ⊂ A and embedding f0 : A0 → A, the f0 lifts to an
automorphism f ∈ Aut(A).

Examples

• The rational order (Q, <) is homogeneous; here one can use a
back-and-forth construction to lift f0.

• The integer order (Z, <) is not homogeneous; consider f0

mapping the pair 1, 3 to the pair 2, 3.
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Homogeneous graphs

Lachlan and Woodrow (1980) classified the countable
homogeneous graphs.

Theorem (C–, Ellis)

If G is a countable homogeneous graph, then the conjugacy
problem for Aut(G ) is either:

• =R (for graphs m · K∞ and ∞ · Kn);

• =+ (for the graph ∞ · K∞); or

• ES∞ (for the random graph Γ and random Kn-free graph Γn).
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Homogeneous digraphs

Cherlin (1998) classified the countable homogeneous digraphs.

Theorem (C–, Ellis)

If G is a homogeneous digraph, then the conjugacy problem for
Aut(G ) is either:

• =R (for digraphs I∞, ∞ · C3, C3[∞]); or

• ES∞ (for digraphs n ·Q, Q[n], Q̂, n · S(2), S(2)[n], S(3), P,
P(3), n · T , T [n], T̂ , Γn, Λn, ΓF , n ∗ K∞, ∞ ∗̂ K∞ ).

Remark
In recent work, we give abstract conditions that guarantee Aut(G )
has complexity ES∞ , reducing tedious verification and providing
new examples.
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Trees

Recent investigation includes regularly branching trees (connected
acyclic graphs).

These are not fully homogeneous, but they are 1-homogeneous
(vertex-transitive).

Theorem (Beserra)

If T is a countable regularly branching tree, then the classification
of Aut(T ) up to conjugacy is either:

• =N (for the 2-regular tree Z);

• E∞ (for the n-regular tree, n > 2); or

• ES∞ (for the ∞-regular tree).

Question
What complexities arise from non-regularly branching trees?
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Metric structures
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C*-algebras

Definition
If X is a locally compact Hausdorff space, its corresponding
commutative C*-algebra is the ring C0(X ) = the continuous
complex valued functions on X vanishing at ∞.

Fact
Every commutative C*-algebra is isomorphic to a closed subspace
of the diagonal of B(H) = the bounded operators on some Hilbert
space H.

Definition
A general C*-algebra is any norm-closed, *-subalgebra of B(H).

Remark
The C*-algebras generalize topological spaces in a sense, and play
a role in representation theory, quantum mechanics, and more.
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Classification of C*-algebras

The classification of C*-algebras is an established research area
(Elliott, Effros, and many others). Recently, the classification has
been studied through the lens of Borel complexity theory.

Proposition (Farah, Toms, Törnquist 2012)

The separable C*-algebras can be parameterized by a countable
sequence of elements of B(H) which is dense in the algebra.

Theorem (Elliott, Farah, et al 2013, Sabok 2015)

The classification of separable C*-algebras is EG∞ (complete for
isometric classifications).
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Operator systems

The scope of the classification can be extended to include the
wider class of operator systems: norm-closed, *-closed, unital,
vector subspaces of B(H).

The operator systems, together with their completely positive
mappings, are a focus of current research in functional analysis,
and indeed many classical problems are best addressed in this
framework.

The proofs of the results on the previous slide can be used to give:

Theorem
The classification of separable operator systems, up to complete
isometric isomorphism, is also EG∞ .
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Finite-dimensional operator systems

The finite-dimensional C*-algebras are easily understood; they are
direct sums of full matrix algebras.

Arveson (2010) classified the finite-dimensional operator systems
that can be embedded in a finite-dimensional C*-algebra.

The general classification was believed to be very complex by
several practitioners.

Theorem (Argerami, C–, et al)

The classification of finite dimensional operator systems, up to
complete isometric isomorphism, is =R (completely classifiable).

Remark
This result is one of several positive applications of Borel
complexity theory; many results show a problem is intractable.
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Conclusion

Borel complexity theory:

• Clarifies historical and ongoing classification programs

• Provides a fresh source for new questions about classical
theories

• Interacts nontrivially with algebra, functional analysis,
dynamical systems, geometric group theory, and of course set
theory and model theory

• Has a rich theory all its own, with many things known and
many very challenging open problems.

Thank you!
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