This with-calculator portion of the test consists of just three problems.

1. Let M_n denote the n-subdivision midpoint-sum approximation to J, given by

 $$J = \int_{2}^{4} x^3 \, dx.$$

 Compute M_4 using your calculator. Show enough work that your solution can be replicated. Show that you know what M_4 is.
2 We continue from problem 1 with \(J = \int_{2}^{4} x^3 \, dx \). We know that an upper bound on the error \(|J - M_n| \) is given by
\[
\frac{K(b - a)^3}{24n^2},
\]
where \(a \) and \(b \) are the limits of integration in \(J \) and \(K \) is an upper bound on \(|f''(x)| \). Determine how large \(n \) must be in order that this error bound guarantees \(M_n \) to be within \(1/10000 \) of the true value of \(J \).

3 To four decimal places, \(\sqrt{\pi + \pi^{2/3}} \approx \) ________
4 Find the antiderivative: \[\int \frac{x - 1}{x^2 - 4x - 5} \, dx \]

5 Give the partial fractions guess for the case where the denominator of the integrand is \((x - 8)^3(x^2 - 4)(x^2 + 4)\) and the numerator is a polynomial of degree at most 3.
6. Show steps in finding the limits, if any, of the sequences:

(a) \(a_n = \sqrt{4n^2 + 2n} - 2n \)

(b) \(a_n = \left(\frac{n + 3}{n} \right)^n \)

(c) \(a_n = \frac{5n + 2}{7n + (-1)^n} \)
7 Show steps in evaluating the improper integral: \[\int_1^\infty xe^{-2x} \, dx \]

8 Smith says that if \(f(x) \) is positive for \(x \geq 1 \) and if \(\lim_{x \to \infty} f(x) = 0 \), then \(\int_1^\infty f(x) \, dx \) is convergent. Has Smith got it right? Explain briefly.
9. Write down the formal definition of \(\lim_{n \to \infty} a_n = L \) for the case where \(-\infty < L < \infty\).

10. Determine the convergence behavior of \(\int_{1}^{\infty} \frac{x^2}{\sqrt{1 + x^{10}}} \, dx \).