Instead of writing down the intervals on which the function is increasing or decreasing, furnish a sign chart for f' with a "stickman" graph of f superimposed.

For example, in a recent homework problem, we had

$$f''(x) = x^3(x-2)(x+2)$$

which showed critical points at $x=0$ & 2.

The sign chart with stickman:

The sign of f'

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign of f levels off at $x=0$.

Local max

@ $x=-2$

Local min

@ $x=2$

Then you don't have to write how f increases on $(-\infty, -2]$ and $[2, +\infty)$ while decreasing on $[-2, 2]$.