1. Ungraph these parabolas. That is, find an equation of form \(y = ax^2 + bx + c \) for each one. It’s best to search the graphs for points with integer coordinates from which you can work:

(a) The solid parabola’s equation.
(b) The skimpy parabola’s equation.

2. Ungraph these parabolas as in problem 1:

(a) The solid parabola’s equation.
(b) The skimpy parabola’s equation.
(c) Find the solid parabola’s exact \(x \)-intercepts.
(d) Find the skimpy parabola’s \(y \)-intercept.

3. Find a formula of form \(f(x) = ax^2 + bx + c \) for \(f \) if we know that \(f_{max} = 8 \) and \(f(0) = f(6) = 0 \).
Recall NQ from our previous assignment. Compute and simplify NQ for the following functions. Note that none of the answers is 1.

(a) $f(x) = 5 - 3x$
(b) $f(x) = 5 - 3x + 4x^2$
(c) $f(x) = 5 + 3x - 4x^2$