1. Make a no-calculator tickmark-free graph of \(f(x) = 4x^2 - 20x - 75 \). Label salient points of your graph with their coordinates. That is, label the vertex and any intercepts with their exact coordinates.

Method A

\[x_{\text{vertex}} = \frac{-b}{2a} = -\frac{(-20)}{2(4)} = \frac{5}{2} \]

\[\frac{5}{2} \left[\frac{1}{4} - \frac{20}{10} - \frac{75}{10} \right] = y_{\text{vertex}} = f(x_{\text{vertex}}) = 4 \left(x - \frac{5}{2} \right)^2 - 100 \]

\[f(x) = 4 \left(x - \frac{5}{2} \right)^2 - 100 \]

- \(x \)-intercepts

 \[4 \left(x - \frac{5}{2} \right)^2 = 100 \]

 \[(x - \frac{5}{2})^2 = 25 \]

 \[x - \frac{5}{2} = \pm 5 \]

 \[x = \frac{5}{2} \pm 5 \]

 \[x = \frac{5}{2} \pm 5 \]

Method B

\[f(x) = 4 \left[x^2 - 5x + \frac{25}{4} - \frac{25}{4} \right] - 75 \]

\[= 4 \left[(x - \frac{5}{2})^2 - \frac{25}{4} \right] - 75 \]

\[= 4 \left(x - \frac{5}{2} \right)^2 - 25 - 75 \]

\[f(x) = 4 \left(x - \frac{5}{2} \right)^2 - 100 \]

- Shape 5 "\(\wedge \)" 1 pt
- \(y \)-int 5 "75" 1 pt
- \(x \)-ints 5 No y 2 pts
- Vertex 5 Total 20

\[\left(\frac{5}{2}, 0 \right) \]

Please turn over.
2. The quadratic functions \(f \) and \(g \) share a \(y \)-intercept at \((0, 5)\). The vertex of the graph of \(f \) is at \((3, -8)\), while the vertex of the graph of \(g \) is at \((3, 6)\). Find formulas for \(f(x) \) and \(g(x) \).

\[
f(6) + g(6) = 10
\]

\[f(x) = a(x-3)^2 - 8
\]

Descartes finds value of \(a \):

\[5 = f(0) = a(0-3)^2 - 8
\]
\[5 = a(9) - 8
\]
\[13 = 9a \quad \text{so} \quad a = \frac{13}{9}
\]

\[f(x) = \frac{13}{9}(x-3)^2 - 8
\]

\[g(x) = a(x-3)^2 + 6
\]

\[5 = g(0) = a(0-3)^2 + 6
\]
\[5 = 9a + 6 \quad \text{so} \quad 9a = -1 \quad \text{or} \quad a = -\frac{1}{9}
\]

\[g(x) = -\frac{1}{9}(x-3)^2 + 6
\]

New \(f(6) = \frac{13}{9}(6-3)^2 - 8 = \frac{13}{9}(3)^2 - 8 = \frac{13}{9}(9) - 8 = 13 - 8 = 5
\)

\(g(6) = -\frac{1}{9}(6-3)^2 + 6 = -\frac{1}{9}(3)^2 + 6 = -\frac{1}{9}(9) + 6 = -1 + 6 = 5
\)

\[f(6) + g(6) = 5 + 5 = 10
\]