Example A In a recent assignment, we graphed the function \(f(x) = e^{x-3} + 4 \). This graph passes the horizontal-line test (HLT) and so \(f \) must have an inverse. Let’s us find a formula for \(f^{-1}(x) \):

\[
\begin{align*}
 y &= e^{x-3} + 4 \\
 x &= e^{y-3} + 4 \quad \text{(now isolate } y) \\
 -e^{y-3} &= -x + 4 \\
 e^{y-3} &= x - 4 \\
 y - 3 &= \ln(x - 4) \\
 y &= 3 + \ln(x - 4)
\end{align*}
\]

so that
\[
f^{-1}(x) = 3 + \ln(x - 4) = \ln(e^3) + \ln(x - 4) = \ln(e^3(x - 4))
\]

Example B This is a more abstract kind of setting where we make use of the The Law of Inverses which says that

If \(g(A) = B \), then \(A = g^{-1}(B) \),

provided, of course, that \(g^{-1} \) exists.

Suppose that
\[
f(x) = 5 - 3Q(2x + 8),
\]

where \(Q \) is an invertible function. Here we find the inverse of \(f \) in terms of the inverse of \(Q \):

\[
\begin{align*}
 y &= 5 - 3Q(2x + 8) \\
 x &= 5 - 3Q(2y + 8) \quad \text{(now isolate } y) \\
 3Q(2y + 8) + x &= 5 \\
 3Q(2y + 8) &= 5 - x \\
 Q(2y + 8) &= \frac{5 - x}{3} \\
 2y + 8 &= Q^{-1}\left(\frac{5 - x}{3}\right) \quad \text{(by the Law of Inverses)} \\
 2y &= Q^{-1}\left(\frac{5 - x}{3}\right) - 8 \\
 y &= \frac{Q^{-1}\left(\frac{5 - x}{3}\right) - 8}{2}
\end{align*}
\]

Thus
\[
f^{-1}(x) = \frac{Q^{-1}\left(\frac{5 - x}{3}\right) - 8}{2}
\]
Exercises

1 Find f^{-1}:

(a) $f(x) = 2 - e^{x-3}$
(b) $f(x) = 3e^{4x-1}$
(c) $f(x) = 3 \ln(4x - 1)$
(d) $f(x) = 3 - \ln(x + 2)$
(e) $f(x) = 2 \ln(3 + e^{5x})$

2 Let g be an invertible function. In each of the following parts, a function f is given in terms of g. For each of these functions f, find f^{-1} in terms of g^{-1}.

(a) $f(x) = 3 - g(x + 2)$
(b) $f(x) = 2g(4x - 5)$
(c) $f(x) = \ln(3 + g(e^{2x}))$