15.4 Problem Set

Dr. Holmes

March 24, 2006

1. Determine
\[\int \int_{R} xy \, dA \]
when \(R \) is the part of the disk bounded by \(x^2 + y^2 = 1 \) which lies in the first quadrant, using polar coordinates.

2. Sketch the region of integration for the integral
\[\int_{0}^{\pi/2} \int_{0}^{1} r \sin(\theta) \, rdr \, d\theta \]
and evaluate the integral.

3. Set up and evaluate using polar coordinates an integral representing the volume of the surface bounded by \(z = 4 - x^2 - y^2 \) and the \(xy \) plane.