7.3 Problem Set

Dr. Holmes

April 8, 2006

Solve the following problems using trigonometric substitutions (showing all details of the substitutions, and following any additional instructions).

1. You can find the antiderivative
 \[\int x\sqrt{4-x^2}\,dx \]
 by using an easy substitution (do it). Now solve the problem using a trigonometric substitution and verify that your answer is equivalent.

2. Set up the familiar problem of finding the area of a circle of radius \(r \) as an integration problem and solve it using a trigonometric substitution (you may assume that it is centered at the origin, and you may exploit symmetries to simplify the problem).

3. Evaluate the integrals using trigonometric substitution:
 (a) \[\int \frac{x^2}{\sqrt{1-x^2}}\,dx \]
 (b) \[\int \frac{1}{x\sqrt{x^2-1}}\,dx \]
 (You might recognize this one, but go ahead and carry out the substitution).
 (c) \[\int \frac{x^2}{\sqrt{9+x^2}}\,dx \]