11.1 Problem Set

Dr. Holmes

February 6, 2006

I completely redid problem 1 after seeing what happened in the class discussion. I also changed problem 2 part c, which happened to be the same as an example in the section, to something simpler (and probably easier).

1. Write the next four terms and give a description for the \(n \)th term of each of the following sequences. Each of them has the indexing starting with 1. The first two are described by formulas and the last one has a recursive rule.

(a)
\[3, 7, 11, 15, \ldots \]

(b)
\[\frac{-4 \cdot 7}{5 \cdot 25}, \frac{-10}{125}, \frac{13}{625}, \ldots \]

(c)
\[2, 3, 7, 13, 27, 53, \ldots \]

2. Determine the limit of each of the following sequences or explain why it diverges.

(a)
\[a_n = \frac{1 - n^2}{2n^2 + 1} \]

(b)
\[b_n = \arctan \left(\frac{n^3}{n^2 + 1} \right) \]
(c)

\[c_n = \frac{(n+1)!}{n!} \]

(write out a few terms of this sequence and you should see what is happening).

(d)

\[\cos(n) \]

(look at what this does on a calculator (use radian mode))

3. What is the limit of the sequence whose first term is 1 and which satisfies

\[x_{n+1} = \frac{1}{2}(x_n + \frac{3}{x_n}) \]?

You may assume in your argument that there is actually a limit. Your limit must be stated in exact form with a supporting argument. Hint: look at problem 52 in the book: use the fact stated in part a.

4. Prove that

\[\lim_{n \to \infty} \frac{n + 2}{n} = 1 \]

using the official definition of limit.