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Aims of this talk

We plan to discuss mathematical constructions,
notably the definition of relations, functions,
and cardinals, in the simple theory of types us-
ing only three types. This is somewhat tricky
because the usual definitions of the ordered
pair require at least 3 types to define a pair,
and so 4 types before any implementation of
a relation or a function as a set of ordered
pairs is feasible. Nonetheless, quite a lot can
be done.

I have given this talk before (or something like
it) at a conference at Boise State several years
ago. At that time I was not aware of Allen
Hazen’s paper “Relations in Monadic Third-
Order Logic”, which says some closely related
things though not always in the same way. Ev-
erything here is independent of Hazen though
he can certainly claim prority for some of the
results.
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A few words about “New Foun-
dations”: the simple theory of
types

This is not a talk about New Foundations,

the infamous set theory proposed by W. v.O.

Quine in 1937, but I believe I have been sold

to this audience as an expert on this topic, and

there is some incidental relation to the moti-

vation of what I am actually talking about.

The simple theory of types (TST) is a sim-

ple typed theory of sets. It is arguable that it

is sketched by Russell in Principles of Mathe-

matics. It is certainly not the type theory of

Principia Mathematica. It was first formally

presented (usually with some extraneous fea-

tures) by various logicians around 1930.
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simple type theory continued. . .

The objects of TST live in sorts indexed by the

natural numbers. TST is a first order theory

with equality and membership as primitive re-

lations. The sorts enter in because the sorting

of an atomic formula must satisfy one of the

templates xn = yn; xn ∈ yn+1.

The axioms of TST are extensionality (sets of

any positive type with the same elements are

the same) and comprehension (for any formula

φ in the language of the theory, {xn | φ}n+1

exists).
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simple type theory continued. . .

Axioms of Infinity and Choice are usually added,

but we do not regard these as part of the base

theory TST. In the first presentations of this

theory, it was usual to add the Peano axioms

on type 0 objects, producing the more spe-

cific theory “arithmetic of order ω”. I have

yet to see a presentation of pure TST older

than the one in Quine’s New Foundations pa-

per of 1937, though I am assured that it was

described.

TST is a beautifully simple foundational sys-

tem. The consistency strength of TST + In-

finity + Choice is exactly the same as that of

Mac Lane set theory (Zermelo set theory with

∆0 separation).
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For any formula φ in the language of TST,
let φ+ be the formula obtained by raising the
type of every variable appearing in φ by one.
Clearly this will remain well-formed. Further,
it is clear that if φ is an axiom, so is φ+, and if
φ entails ψ by a logical rule, then φ+ will entail
ψ+. From this it follows that if a sentence φ

is a theorem, φ+ is also a theorem.

It is also the case that for any mathematicial
object defined by a set abstract {x | φ}, there
is an exactly analogous object {x | φ+} in the
next higher type.

For these reasons it is common on occasions
when this theory is actually used to suppress
the type indices, because anything proved about
one type can be proved about any higher type,
and the relative types of variables in a formula
can usually be deduced from context. This
is related to the “systematic ambiguity” prac-
ticed by Russell and Whitehead in Principia,
but in TST it is especially simple.
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New Foundations

Observing this, Quine proposed the theory New

Foundations, which is an unsorted first-order

theory with equality and membership as primi-

tives, whose axioms are precisely the formulas

which can be obtained by dropping all distinc-

tions of type between variables in an extension-

ality or comprehension axiom of TST (without

introducing identifications between variables of

different types). Note that “{x | x 6∈ x} exists”

(the instance of naive comprehension yielding

the Russell paradox) is not an axiom of New

Foundations because x 6∈ x cannot be obtained

from a formula of the language of TST by

dropping type distinctions. Formulas which

can be so obtained are called “stratified” for-

mulas, and it is traditional to give a definition

of stratified formula for NF which does not

depend on the language of a different theory

TST, but we will not do that here.
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Results of Specker

Specker showed that the consistency strength

of NF is exactly that of the version of TST in

which we add the axiom scheme of ambiguity

φ↔ φ+ for each sentence φ. In TST we know

that φ+ is provable if φ is provable, but we

do not know that φ+ is true if φ is true (and

under such reasonable further assumptions as

the axiom of choice, we can show that this is

not always true).

Specker also showed that the Axiom of Choice

can be refuted in NF, from which it follows

that the Axiom of Infinity is a theorem.
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One reason to be interested in the mathemat-

ics of three types is that one of the fragments

of Quine’s “New Foundations” which is known

to be consistent is NF3, shown to be consis-

tent by Grishin, in which only those instances

of comprehension are used which would make

sense in the theory of types with just three

types.

For any n (for example, n = 3), TSTn is the

theory obtained from TST by cutting down the

language to those formulas mentioning only

the first n types (0 to n − 1) and the axioms

to the axioms of TST expressible in this lan-

guage.
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TST3

The theory of types with three types is a 3-

sorted theory with sorts called “type 0”, “type

1”, and “type 2”. Where i is 0 or 1, xi ∈ yi+1 is

a well-formed membership sentence. Where i

is 0,1,2, xi = yi is a well-formed identity state-

ment. We will not as a rule actually put type

indices on variables; they will usually be de-

ducible from context.
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The axioms are Extensionality:

(∀A.(∀B.(∀x.x ∈ A↔ x ∈ B)→ A = B))

where the type of A,B is one higher than the

type of x, and Comprehension:

(∃A.(∀x.x ∈ A↔ φ)),

where φ is any formula in which A does not

occur free, the type of A being one higher than

the type of x. The object A whose existence

is asserted (unique by Extensionality) is called

{x | φ}.

This is a first order version of what is com-

monly called “third-order logic”.
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NFn is obtained from TSTn in the same way

that NF is obtained from TST: the compre-

hension axioms of NFn are those which can be

obtained by dropping all type distinctions from

a comprehension axiom of TSTn.

It is a result of Grishin that NF4 is the same

theory as NF. The most elegant way to show

this (though it is not how Grishin did it) is to

present a finite axiomatization of NF compre-

hension in which no axiom used more than four

types. This has been done by Yasuhara, I be-

lieve. The consistency problem for NF has not

yet been solved, and has acquired a reputation

as a fearsomely difficult problem.

By contrast, every externally infinite model of

TST3 satisfies the ambiguity scheme φ ↔ φ+

(where of course φ will mention only two types)

and can be shown to have the same theory as

a model of NF3. To my mind, this makes NF3
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a quite interesting theory (it is found every-

where!) and an interest in finding out what

mathematics can be done in NF3 is a large

part of the motivation for the work I report

here, though I actually present it in a typed

context.



As noted briefly earlier, we cannot define a

relation or function as a set of ordered pairs

in TST3, because the ordered pair 〈a, b〉 =

{{a}, {a, b}} is only defined for a and b of type

0, and since it is a type 2 object it cannot be

a member of any set in this theory.
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We could attempt to define relations using sets

of unordered pairs {a, b}; of course, only sym-

metric relations could be defined in this way.

If R is a symmetric relation (xRy ↔ y Rx) then

we can define R∗ (the set implementing R) as

{{a, b} | aR b}. Of course, only relations on

type 0 objects can be implemented in this way

(and as a rule it is only structures on type 0

objects that we will attempt to implement).
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We can implement any partial order ≤ as the

collection of its (weak) segments: if R is a re-

flexive, antisymmetric, transitive relation, de-

fine R∗ as the collection {{y | xRy} | x = x}.
The weak segment is preferred because it is

possible to distinguish between an ordering of

a set with one element and an ordering of the

empty set.
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Quasi-Orders

More generally, any quasi-order (reflexive, tran-

sitive relation) can be implemented. If R is a

reflexive, transitive relation, define R∗ as {{y |
xRy} | x = x}, as above.

If R is a set, define xRy as (∀A ∈ R.x ∈ A →
y ∈ A).

Quasi-orders include equivalence relations and

partial orders, including linear orders and well-

orderings.
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Functions and Cardinality

In one special case the implementation of func-

tions (and of the notion of cardinality) is quite

easy. If A and B are disjoint sets, we can im-

plement any function f : A → B using the set

f∗ = {{x, f(x)} | x ∈ A}. The lack of direction-

ality makes no difference, since we are not in

doubt as to what is the domain and what is

the range (if we were to interchange domain

and range, exactly the same set would serve to

represent f−1).
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So we can define f : A → B, A and B being

disjoint sets, as (∀x ∈ A.(∃y ∈ B.{x, y} ∈ f)) ∧
(∀x ∈ A.(∀y, z ∈ B.{x, y} ∈ f ∧ {x, z} ∈ f → y =

z)). We can define A ∼ B as (∃f.f : A→ B∧f :

B → A).
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Pabion used the preceding analysis of cardinal-

ity in his proof that NF3 + Infinity is equicon-

sistent with second order arithmetic , with the

additional observation that for finite sets A ∼
B ↔ A−B ∼ B−A, so the general case reduces

to the disjoint case.

Henrard showed (unpublished work) that car-

dinality can be defined for all sets, finite and

infinite, disjoint and overlapping.
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Our idea is to represent a function f using its

set of forward orbits {{fn(x) | n ≥ 0} | x ∈
dom(f)}. This does not quite work, as we will

see, but it does allow for a complete defini-

tion of cardinality and an “almost” complete

definition of function.
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Historical digression about Hen-
rard’s approach

Henrard also used a representation of orbits

in a bijection: he uses the idea of a “chain”,

which is the set of unordered pairs {x, f(x)}
in an orbit in the function. We look at how

to express this concept without reference to

functions: if A is a set of two-element sets

such that no element of
⋃
A belongs to more

than two elements of A, then A is a union

of chains. An element of
⋃
A which belongs

to only one element of a union of chains A is

called an endpoint of A.
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Historical digression about Hen-
rard’s approach (cont.)

A closed chain is a nonempty union of chains

with no endpoints, no proper subset of which

is a nonempty union of chains with no end-

points. Any chain has the property that it has

no proper subset which has no endpoints. A

union of chains which has one endpoint and has

no subset which is a closed chain is a chain. A

union of chains which has two endpoints and

which has no proper subset with no endpoints

or one endpoint is a chain. These tools can be

used to cover much the same ground as ours,

however there is a disadvantage that there is

no representation of the distinction between f

and f−1 (for us, this distinction collapses only

in (some) finite cycles in f).

We can then say that A ∼ B iff there is a

set of chains such that each element of A ∪B
22



participates in exactly one of the chains (and

nothing else participates in any of them) and

each chain either has one endpoint in A − B
and one in B − A or is closed and entirely in

A ∩B.

The material about Henrard’s approach was

added here after I had completed the work on

the approach I present.



Our approach, continued

If F is any definable function (think of this as

implemented by a formula F (x, y) with appro-

priate properties), define OFx as {y | (∀A.x ∈ A∧
(∀z.z ∈ A ∧ z ∈ dom(F ) → F (z) ∈ A) → y ∈ A)}.
Define F ∗ as {OFx | (∃y.y = F (x)) ∨ (∃y.x =

F (y))}.

Note that I do need orbits (taken to be single-

tons) for elements of the range of F which are

not in the domain.
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Orbits OFx are of two kinds. There are finite

sets (among which the sets of size 1 and 2 are

special) and there are infinite sets. If {x} is

an orbit, then F (x) = x. If {x, y} is an orbit

and {x} is not, then F (x) = y. From the other

finite orbits, we cannot determine a function

value.

If OFx is not a finite set, then the distinguishing

characteristic of F (x) is that OFx − {x} = OFy .

To identify OFx among the sets in F (many of

which contain x) observe that it is the inter-

section of all elements of F that contain x.
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It is useful to pause and observe that the no-

tion of finite set is definable in TST3: the set

Fin can be defined as the set of all sets which

contain ∅ and contain all sets x∪{y} whenever

they contain x.

We have already noted that the notion of equinu-

merousness of finite sets is definable, so the

cardinal of each type 1 finite set is already de-

finable as a type 2 set.

Strictly speaking, one does not need to allude

to the notion of finite set in the definitions

which follow.
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We define a first approximation to function ap-

plication. Where F is a set and x is an element

of
⋃
F , we define F [x] as

x, in case {x} ∈ F

y, in case {x, y} ∈ F and {x} 6∈ F

For the next case, we need to define OFx as⋂
{A ∈ F | x ∈ A}:

the unique y such that OFy = OFx − {x}, if this

exists

else x, when none of the special conditions

above hold.
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If F is a definable function and F ∗ is defined

as above, F ∗[x] = F (x) is true except in two

special cases:

If x is in the range of F but not in the domain

of F then F ∗[x] = x will hold: knowledge of

the intended domain and range of F makes

this harmless.

More annoyingly, if x is in a finite orbit in F

with three or more elements, F ∗[x] = x rather

than F (x). This is an essential obstruction

to defining functions in three types which we

cannot entirely overcome.
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What is an obstruction to defining functions in

general is not an obstruction to defining cardi-

nality. If F is a definable bijection from A to B,

then F ∗ with application defined as above will

also be a bijection from A to B. The fact that

F ∗[x] is defined as x on B−A is harmless. Less

obviously, the fact that F ∗[x] is defined as x on

finite orbits in F is also harmless: the reason

that this is not a problem is that a finite orbit

in F clearly must lie in A ∩ B, and changing

this to the identity, while it does change what

bijection from A to B we consider, does not

change the fact that it is a bijection from A to

B.
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So we can define A ∼ B in a quite standard

way: (∃F | (∀x ∈ A.x ∈
⋃
F ∧ F [x] ∈ B ∧ (∀y ∈

A.F [x] = F [y] → x = y) ∧ (∀x ∈ B.(∃!y ∈
A.F [y] = x)))).

29



It is important to consider whether we have the

theory of cardinality that we expect. Is ∼, thus

defined, an equivalence relation? Can we prove

the Schröder-Bernstein theorem? The answer

to both of these questions is yes, though the

proofs are slightly different from the usual ones.
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Equinumerousness is an Equiva-
lence Relation

We prove that ∼ is an equivalence relation

in more usual contexts by observing that the

identity function on A is a bijection witness-

ing A ∼ A (this works here), the fact that

the inverse of a bijection from A to B is a

bijection from B to A (this works here: if F

is a (set) bijection from A to B, the relation

F [y] = x ∧ y ∈ A is bijective and (because F is

coded by a set) has no finite cycles of length

greater than 2, so it is represented by a set).
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The proof of transitivity uses the fact that the

composition of a bijection from B to C with a

bijection from A to B is a bijection from A to

C. This works, but not quite painlessly. Let F

be a bijection from A to B and G be a bijection

from B to C, both coded by sets. Let H(x, y)

be defined as y = G[F [x]]∧x ∈ A. This relation

is bijective, and so H∗ is a bijection witnessing

A ∼ C; but it is not necessarily the composition

of G and F (it may be corrected to eliminate

finite cycles).
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We can define |A| ≤ |B| as “there is a subset

C of B such that A ∼ C”. An important result

in the usual theory of cardinals is that |A| ≤
|B| ∧ |B| ≤ |A| → |A| = |B| (where |A| = |B| is

of course synonymous with A ∼ B). This is

the Schröder-Bernstein theorem.

The proof has the same flavor as the last clause

of the previous proof: a bijective relation is de-

fined in the manner of the usual proof, but the

function obtained in the end is not necessarily

the expected function.
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Suppose that f : A → B′ ⊂ B and g : B →
A′ ⊆ A are sets coding bijections. For any

set A and function f whose domain includes

A, define f“A as {f [x] | x ∈ A}. Define P

as the intersection of all sets which contain

every element of A − g“B and contain g[f [z]]

whenever they contain z. Define H(x, y) as

(x ∈ P ∧ f [x] = y) ∨ (x ∈ A − P ∧ g[y] = x).

This is a bijective relation from A to B, and

H∗ will code a bijection from A to B (but not

necessarily the expected one).
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If we have the Axiom of Infinity (which we can

express in various forms: Fin 6= V works), we

can show that the cardinals of finite sets sat-

isfy the Peano axioms, and define addition and

multiplication in sensible ways. We can show

that for any finite sets A and B, there is a finite

set B′ disjoint from A and equinumerous with

B, and |A|+ |B| = |A ∪B′| (this can be a defi-

nition or a theorem if addition is defined in the

usual inductive fashion). There is a more com-

plicated way to characterize |A||B|, supposing

wlog that A and B are disjoint. A set C disjoint

from A and B will have this cardinality if there

is a set M each element of which is a triple

consisting of one element of A, one element

of B, and one element of C, such that any two

element set with one element of A and one el-

ement of B is a subset of exactly one element

of M and any element of C belongs to exactly

one element of M .
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Moreover, although natural numbers are type 2

objects we can nonetheless code any definable

class of natural numbers as a set by consid-

ering the type 2 set of all type 1 sets which

belong to some element of the class of natural

numbers. This representation works because

the natural numbers are disjoint from one an-

other. TST3 + Infinity interprets second order

Peano arithmetic; in fact it is equiconsistent

with second-order arithmetic (and so is NF3 +

Infinity, but this is beyond the scope of this

talk).
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Having completed the theory of cardinality, we

ask whether the theory of functions, which is

slightly defective, can be repaired? The answer

is that it can be partially but not completely

repaired without additional information on the

structure of the universe.

Can other applications of the theory of func-

tions be carried out? We will find that we

can develop the complete theory of similarity

of well-orderings (order types) (and more gen-

erally the theory of isomorphism types of linear

orders).
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Refining the Definition of Func-
tion

We show how to refine the definition of func-

tion so that it works essentially as often as

possible. The difficulty is with finite cycles of

length > 2. Suppose that F (x, y) is a func-

tional formula (so F (x) is first-order definable)

and G(x) is a formula which is true of exactly

one member of each finite cycle of length > 2

in F (and only of elements of such finite cy-

cles). A new class function F ′(x, y) is defin-

able as (¬G(x)∧F (x, y))∨ (G(x)∧x = y). The

function F ′ contains no finite cycles, and we

define F ′∗ exactly as above. We redefine F ∗ as

F ′∗ ∪ {{F (x), F (F (x))} | G(x)}.
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The new elements of F ∗ tell us where the func-

tion “reenters” a finite loop which has been

cut in the transition from F to F ′. The new

two element sets are identifiable, because they

are the only two element sets A in F ∗ which

are subsets of an element B of F such that

B contains as a subset a singleton element of

F disjoint from A. Thus F ′ can be recovered

from F . We define F (x) as F ′[x] except when

{x} ∈ F and there is a unique y such that

{y, F ′[y]} ∈ A, {y, F ′[y]} is disjoint from {x},
and there are elements of A which contain all

of x, y, F ′[y]. In this case F (x) is defined as y.
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The difficulty with this definition is that in the
absence of a certain amount of Choice, there
might be functional relations which did not ad-
mit a definable selection of one element from
each of their finite cycles. In such a case, this
definition might not work.

If one has Choice for collections of disjoint fi-
nite sets, this definition will always work. Note
that this implies that we can always code func-
tions if Infinity does not hold.

If one has a linear order on the universe (a con-
dition which we can express with our ability to
code partial orders as sets) then one will al-
ways be able to define functions and moreover
one has a much simpler way to do it: let A and
B be two disjoint five element sets, let ≤ be
the linear order, and define 〈a, b〉 as {a, b}∆A if
a ≤ b and {a, b}∆B otherwise. It will then be
possible to define functions as sets of ordered
pairs in the usual way.
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Functions can always be defined on restricted

domains which happen to support linear or-

ders. For example, the statement that two

well-orderings (or indeed any two linear order-

ings) are isomorphic can be stated in the usual

way, becausethe linear order on the domain of

the first well-ordering can be used to select

one element from each cycle in a bijective re-

lation witnessing the isomorphism. That iso-

morphism is an equivalence relation is provable

in exactly the usual way, because compositions

of functions with linearly ordered domains can

be defined without the finite cycle corrections.

We got sets coding cardinals of type 0 sets, be-

cause their elements are type 1, but we do not

get objects coding ordinal numbers or linear

order types, because the orderings themselves

(always on type 0) are represented by type 2

sets and so cannot belong to further sets.
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There can be no reliable notion
of function in TST3

It takes some care to articulate the negative
result here.

Suppose that we add a primitive relation f(x, y)
to the language of TST3, x and y being type
0, about which we assume only that f is a func-
tional relation (with a full ability to participate
in comprehension axioms).

The existence of a definition of function amounts
to existence of a formula f∗(z) (involving f) and
a formula F not involving f such that (∃z.f∗(z))∧
(∀xyz.f∗(z) ∧ F (x, y, z) ↔ f(x, y)) is a theorem.
The ability to prove this theorem for the com-
pletely anonymous function f will give us the
ability to specify representatives for any defin-
able functional relation in a uniform way.

We will now exhibit a model of TST3 in which
this situation is impossible.
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Consider a model of TST4 (just add one more
type) in which there is a function f (repre-
sented by a set of Kuratowski pairs as usual)
whose domain is an infinite union of cycles of
length 3 and covers type 0.

Let G be the class of permutations of type
0 which are finite products of cyclic permuta-
tions of the form (a, f(a), f2(a)) (f restricted
to a cycle). We extend a permutation in G
to types 1 and 2 by the rule π(A) = π“A.
We refer to a set A of higher type as nice
iff there is a finite set S of type 0 objects
such that any permutation in G which fixes
all elements of S fixes A. By standard consid-
erations (the Frankel-Mostowski construction)
the hereditarily nice sets make up a model of
TST4.

We will show using the model of TST3 made
up of types 0-2 in the permutation model of
TST4 that there cannot be a definition of func-
tion in the sense articulated in the previous
slide.
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For each type 1 set A with support S, for each

a whose orbit does not meet S, the orbit of a

is either contained in A or disjoint from A, be-

cause A must be fixed by (a, f(a), f2(a)). Thus

each set A in the permutation model has fi-

nite symmetric difference from a union of or-

bits. Moreover, any set in the original model

of TST4 which has finite symmetric difference

from a union of orbits is also a set of the per-

mutation model.

For each type 2 set A in the permutation model

with support S and for each a whose orbit is

disjoint from S, and for each Y in the per-

mutation model disjoint from the orbit of a,

either 0 or 3 of {a, f(a)} ∪ Y , {f(a), f2(a)} ∪
Y , {f2(a), a} ∪ Y belongs to A and either 0

or 3 of {a} ∪ Y , {f(a)} ∪ Y , {f2(a)} ∪ Y be-

longs to A (again, by considering the action of

(a, f(a), f2(a)) on A).
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Further, observe from the above that in fact

for each a not in the support S of A (of type

1 or 2), A is fixed by (a, f(a)).

It then follows that for any first order for-

mula F (a, b, c) with just the given parameters,

F (a, f(a), z) will have the same truth value as

F (f(a), a, z) for all but finitely many a. [this

follows because π(x) = π(y) ↔ x = y and

π(x) ∈ π(y) ↔ x ∈ y, whence uniform ap-

plication of permutations preserves any first-

order formula]. But this means that if we in-

terpret f(x, y) as y = f(x), there cannot be

any f∗ and F as above such that (∃z.f∗(z)) ∧
(∀xyz.f∗(z) ∧ F (x, y, z) ↔ f(x, y)) is a theorem.

The supposed z such that f∗(z) would have the

property that F (a, f(a), z) would be true and

F (f(a), a, z) would be false for all but finitely

many a, and this is impossible.


