1.1

\[s^2 + s^2 = d^2 \]
\[2s^2 = \frac{d^2}{2} \]
\[s^2 = \frac{d^2}{4} \]
\[s = \frac{d}{2\sqrt{2}} \]

\[\text{area} = s^2 = \frac{d^2}{2} \]

\[\text{Step} \]

\[\text{a)} \text{ The equation of the line through } \ A \ \& \ B \ \text{ is} \]
\[y + x = 1 \]
\[\Rightarrow y = -x + 1 \]

\[\text{So the coordinates of } \ P \ \text{ are} \ (x, -x+1) \]

\[\text{b)} \ \text{area} = 2x(-x+1) = -2x^2 + 2x \]

62. Done in Class
1.3.

<table>
<thead>
<tr>
<th>By definition of "radian"</th>
</tr>
</thead>
<tbody>
<tr>
<td>radians = (\frac{30\text{ cm}}{50\text{ cm}}) = 0.6</td>
</tr>
<tr>
<td>degrees = 0.6 \times \frac{180^\circ}{\pi} = 36.44^\circ</td>
</tr>
</tbody>
</table>

39. DONE IN CLASS

60. a) With increasingly smaller windows, \(y=x \) & \(y=\sin(x) \) become indistinguishable

b) In degree mode \(y=\sin(x) \) & \(y=0 \) are almost indistinguishable

c) \(\sin(0.2) = 0.198669 \) (radian mode)
\(\sin(0.2) = 0.03491 \) (degree mode)

1.5 62. DONE IN CLASS

Balance after 6 yrs

\[B(t) = (1.0475)^t - 500 \]

\[B(14) = 957.47 \]
\[B(15) = 1002.95 \]

\(B_0 = 500 \)