Cofinalities and coinitialities
Consistency results
Characterization of countable cofinality
The coinitiality of Efimov spaces

Cofinalities of Boolean algebras
Definition (Koppelberg)
The cofinality $\text{cf}(A)$ of a Boolean algebra A is the least ordinal α such that A is the union of an increasing chain of length α of proper subalgebras of A, provided such a chain exists.

Basic facts
If A is infinite, then $\text{cf}(A)$ exists and is a regular cardinal $\leq |A|$.

If B is an infinite quotient of A, then $\text{cf}(A) \leq \text{cf}(B)$.
Definition
A Boolean algebra A has the *countable separation property* if for every pair (S, T) of countable subsets of A such that every element of S is disjoint from every element of T, there is some $a \in A$ that is above all elements of S and disjoint from all elements of T. (Every countable gap is filled.)

Note that the countable separation property follows from σ-completeness.

Theorem (Koppelberg)

*Every infinite Boolean algebra with the countable separation property has uncountable cofinality. Every infinite complete Boolean algebra has cofinality \aleph_1.***
Cofinalities of C^*-algebras and coinitialities of compact spaces
Definition

The *cofinality* \(\text{cf}(A) \) of a \(C^* \)-algebra \(A \) is the least ordinal \(\alpha \) such that \(A \) has a dense subalgebra that is the union of an increasing chain of length \(\alpha \) of proper closed \(* \)-subalgebras of \(A \), provided such a chain exist.

The *coinitiality* \(\text{ci}(X) \) of a compact space \(X \) is the cofinality of the \(C^* \)-algebra \(C(X) \) of continuous functions from \(X \) to \(\mathbb{C} \).

Basic facts

Every infinite-dimensional \(C^* \)-algebra has a regular cofinality that is bounded by its density. Every infinite compact space has a regular coinitiality that is bounded by its weight.
Remarks

The coinitiality of an infinite compact space X is the least ordinal α such that X is the limit of a nontrivial inverse system indexed by α.

\[X \rightarrow \cdots \rightarrow X_{\nu+1} \rightarrow X_{\nu} \rightarrow \cdots \rightarrow X_0 \]

We will use this characterization later on.

If X is infinite, compact and zero-dimensional, then $\text{ci}(X) = \text{cf}(\text{clop}(X))$, where $\text{clop}(X)$ is the Boolean algebra of clopen subsets of X.
Lemma (Boolean case due to Koppelberg and van Douwen)

Let X be an infinite compact space. Then the following hold:

a) If Y is a closed subspace of X of uncountable cofinality, then $\text{ci}(X) \leq \text{ci}(Y)$. (This is true without the uncountability assumption but harder to prove.)

b) Let $w(X)$ denote the weight of X, i.e., the smallest size of a basis of the topology on X. Then $\text{ci}(X) \leq \text{cf}(w(X))$.

c) $\text{ci}(X) \leq 2^{\aleph_0}$

d) Let $a(X)$ denote the altitude of X, i.e., the smallest length of a strictly decreasing sequence of closed subsets of X whose intersection is a singleton. Then $\text{ci}(X) \leq a(X)$.
Consistency results
Theorem (Koszmider)

It is consistent that every compact zero-dimensional space has altitude at most \aleph_1 while $2^{\aleph_0} > \aleph_1$.

In particular, it is consistent that 2^{\aleph_0} is large while every compact zero-dimensional space has small cointiality.

Remark

Observe that a compact space is of countable altitude iff it contains a converging sequence.
It seems to be set-theoretic folklore that under MA, every infinite compact space of weight $< 2^{\aleph_0}$ has a nontrivial converging sequence.

Theorem

Let $\text{cov}(\mathcal{M})$ denote the least size of a family of meager sets that covers the real line. Then every infinite compact space of weight $< \text{cov}(\mathcal{M})$ has a nontrivial converging sequence.

Corollary

After adding \aleph_{ω_1} Cohen reals to a model of CH, we obtain a model of set theory in which every compact space has cointinality $\leq \aleph_1 = \text{cf}(2^{\aleph_0}) < 2^{\aleph_0}$.
Question

Is it consistent that there is a Boolean algebra of cofinality $> \aleph_1$ or a compact space of cointiality $> \aleph_1$?

What about noncommutative C^*-algebras?

Observe that a compact space of cointiality $> \aleph_1$ can neither contain a nontrivial converging sequence nor a copy of $\beta \omega$. In other words, it has to be an Efimov-space. However, none of the currently known constructions of an Efimov space can yield a space of cointiality $> \aleph_1$.
Characterization of countable cofinality
Definition
Let \(X \) be a compact space. A pair \((x^0_n)_{n \in \omega}, (x^1_n)_{n \in \omega} \) is a double sequence in \(X \) if for all \(p \in \beta \omega \setminus \omega \) the two sequences have the same \(p \)-limit.

Theorem
An infinite compact space \(X \) is of countable coinitiality iff it contains a double sequence.

This theorem implies that an infinite compact space \(X \) of coinitiality \(\geq \aleph_1 \) contains neither a double sequence nor a copy of \(\beta \omega \).
The cofinality of Efimov spaces
Theorem
Assuming ♦, there is an Efimov space of uncountable cofinality, i.e., there is an infinite compact space that contains neither a double sequence nor a copy of $\beta \omega$.

Theorem
Assuming ♦, there is an Efimov space of countable cofinality, i.e., there is an infinite compact space that contains a double sequence but no nontrivial converging sequence and no copy of $\beta \omega$.
Thank you!