These homework problems are to be turned in and will be graded for credit. Turn in your work on separate pages, using this as a cover sheet. Please staple your work together. For full credit, you must show all of your work.

1. Find a basis for each of these subspaces in \mathbb{R}^4.
 (a) All vectors whose components are equal.
 (b) All vectors whose components add to zero.
 (c) All vectors that are perpendicular to $(1, 1, 0, 0)$ and $(1, 0, 1, 1)$.
 (d) The column space and the nullspace of the 4×4 identity matrix I.

2. Given a linearly independent set of vectors u_1, u_2, u_3, all in \mathbb{R}^3, construct a new set of vectors v_1, v_2, v_3 as follows:

 \[v_1 = -2u_1 + u_2 \]
 \[v_2 = u_1 - 2u_2 + u_3 \]
 \[v_3 = u_2 - 2u_3 \]

 Show that v_1, v_2, v_3 are linearly independent.

3. If V is the subspace spanned by $(0, 1, 1)$ and $(2, 0, 1)$, find a matrix A that has V as its row space. Find a matrix B that has V as its nullspace.

4. If the entries of a 4×4 matrix are chosen randomly between 0 and 1, what are the most likely dimensions of the four subspaces? What if the matrix is 4×7?

5. Add the extra column b and reduce A to echelon form.

 \[
 \begin{bmatrix}
 A & b
 \end{bmatrix} = \begin{bmatrix}
 1 & 2 & b_1 \\
 3 & 4 & b_2 \\
 4 & 6 & b_3
 \end{bmatrix}
 \]

 From the b column after elimination, read of $m - r$ basis vectors in the left nullspace. Show that those y’s are the combinations of rows that give zero rows.

6. Construct $A = uv^T + wz^T$ (where u and v are rank 1 matrices) are who column space has basis $(1, 2, 4), (2, 2, 1)$ and whose row space has basis $(1, 0), (1, 1)$. Write A as a 3×2 matrix times a 2×2 matrix.