These homework problems are to be turned in and graded for credit. Turn in your work on separate pages, using this as a cover sheet. Please staple your work together. For full credit, you must show all of your work.

1. (a) If A is invertible and $AB = AC$, prove quickly that $B = C$.

 (b) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find two different matrices such that $AB = AC$.

2. Find the inverses of

 $A = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 4 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 3 & 0 & 0 \\ 0 & 0 & 6 & 5 \\ 0 & 0 & 7 & 6 \end{bmatrix}$

3. What three matrices E_{21} and E_{12} and D^{-1} reduce $A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$ to the identity matrix? Multiply $D^{-1}E_{21}E_{12}$ to find A^{-1}.

4. What three elimination matrices E_{21}, E_{31}, and E_{32} put A into its upper triangular form $E_{32}E_{31}E_{21}A = U$? Multiply by E_{32}^{-1}, E_{31}^{-1} and E_{21}^{-1} to factor A into L times U:

 $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$

 $L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}$

5. Factor matrix A into $A = LU$.

 $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

 This is an example of a tridiagonal matrix because it only has non zeros on the main diagonal, and the two adjacent diagonals.