Linear systems of equations occur in almost every area of the applied science, engineering, and mathematics.

Hence, numerical linear algebra is one of the pillars of computational mathematics.
A linear system of m equations and n unknowns can be expressed in the following general form:

\[
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \cdots + a_{2n}x_n = b_2, \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \cdots + a_{3n}x_n = b_3, \\
\vdots \quad \vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots \\
a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \cdots + a_{mn}x_n = b_m.
\] (1)

Here a_{ij} are the coefficients of the systems, b_i are the right hand sides (RHS), and x_j are the unknown values that must be determined. a_{ij} and b_i will be given by the problem.
Linear systems can be classified into the following three types:

1. **Square linear system**: If the number of equations equals the number of unknowns (i.e. $m = n$).

2. **Overdetermined system**: If the number of equations is greater than the number of unknowns (i.e. $m > n$).

3. **Underdetermined system**: If the number of equations is less than the number of unknowns (i.e. $m < n$).
Matrices and vectors

A convenient notation to describe a linear system of equations is in terms of matrices and vectors.
Matrices

A matrix is just a table of numbers containing m rows and n columns and can be expressed as:

$$A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}.$$

- We typically use capital letters to denote matrices.
- We write $A \in \mathbb{R}^{m \times n}$ to denote a matrix with m rows and n columns.
- A common shorthand notation for a matrix is $A = \{a_{ij}\}$, where the values for i and j are understood from the problem.
Matrices

- A matrix is just a table of numbers containing \(m \) rows and \(n \) columns and can be expressed as:

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}.
\]

- We typically use capital letters to denote matrices.
- We write \(A \in \mathbb{R}^{m \times n} \) to denote a matrix with \(m \) rows and \(n \) columns.
- A common shorthand notation for a matrix is \(A = \{a_{ij}\} \), where the values for \(i \) and \(j \) are understood from the problem.
A matrix is just a table of numbers containing m rows and n columns and can be expressed as:

$$A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}.$$

We typically use capital letters to denote matrices.

We write $A \in \mathbb{R}^{m \times n}$ to denote a matrix with m rows and n columns.

A common shorthand notation for a matrix is $A = \{a_{ij}\}$, where the values for i and j are understood from the problem.
Matrices

A matrix is just a table of numbers containing m rows and n columns and can be expressed as:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}.$$

- We typically use capital letters to denote matrices.
- We write $A \in \mathbb{R}^{m \times n}$ to denote a matrix with m rows and n columns.
- A common shorthand notation for a matrix is $A = \{a_{ij}\}$, where the values for i and j are understood from the problem.
Vectors

If the matrix only has one row or column then it is called a vector.

- A column vector with \(n \) entries can be expressed as

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}.
\]

- A row vector and can be expressed as

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 & \cdots & x_n
\end{bmatrix}.
\]

- We typically use bold lower-case letters to denote vectors.
- A column vector with \(n \) real entries is denoted by \(\mathbf{x} \in \mathbb{R}^n \), while a row vector is denoted by \(\mathbf{x} \in \mathbb{R}^{1 \times n} \).
If the matrix only has one row or column then it is called a vector.

- A **column vector** with \(n \) entries can be expressed as

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}.
\]

- A **row vector** can be expressed as

\[
x = [x_1 \ x_2 \ x_3 \ \cdots \ x_n].
\]

We typically use bold lower-case letters to denote vectors.

- A column vector with \(n \) real entries is denoted by \(x \in \mathbb{R}^n \), while a row vector is denoted by \(x \in \mathbb{R}^{1 \times n} \).
If the matrix only has one row or column then it is called a vector.

- A **column vector** with \(n \) entries can be expressed as

\[
\mathbf{x} = \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}.
\]

- A **row vector** and can be expressed as

\[
\mathbf{x} = [x_1 \ x_2 \ x_3 \ \cdots \ x_n].
\]

We typically use bold lower-case letters to denote vectors.

- A column vector with \(n \) real entries is denoted by \(\mathbf{x} \in \mathbb{R}^n \), while a row vector is denoted by \(\mathbf{x} \in \mathbb{R}^{1 \times n} \).
If the matrix only has one row or column then it is called a vector.

- A column vector with \(n\) entries can be expressed as

 \[
 \mathbf{x} = \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
 \end{bmatrix}.
 \]

- A row vector and can be expressed as

 \[
 \mathbf{x} = \begin{bmatrix}
 x_1 & x_2 & x_3 & \cdots & x_n
 \end{bmatrix}.
 \]

- We typically use bold lower-case letters to denote vectors.
 - A column vector with \(n\) real entries is denoted by \(\mathbf{x} \in \mathbb{R}^n\), while a row vector is denoted by \(\mathbf{x} \in \mathbb{R}^{1 \times n}\).
Vectors

If the matrix only has one row or column then it is called a vector.

- A **column vector** with n entries can be expressed as

 \[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}. \]

- A **row vector** and can be expressed as

 \[\mathbf{x} = [x_1 \ x_2 \ x_3 \ \cdots \ x_n]. \]

We typically use bold lower-case letters to denote vectors.

A column vector with n real entries is denoted by $\mathbf{x} \in \mathbb{R}^n$, while a row vector is denoted by $\mathbf{x} \in \mathbb{R}^{1 \times n}$.
Matrix & vector operations
Matrix & vector operations
Matrix & vector operations: Transpose

Let $A \in \mathbb{R}^{m \times n}$ with entries

$$A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix},$$

then the \textbf{transpose} of A switches the columns of A with the rows, i.e.

$$A^T = \begin{bmatrix}
 a_{11} & a_{21} & a_{31} & \cdots & a_{m1} \\
 a_{12} & a_{22} & a_{32} & \cdots & a_{m2} \\
 a_{13} & a_{23} & a_{33} & \cdots & a_{m3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{1n} & a_{2n} & a_{3n} & \cdots & a_{mn}
\end{bmatrix}.$$

Note that $A^T \in \mathbb{R}^{n \times m}$ and that $(A^T)^T = A$.
The transpose can also be applied to vectors. In this case if \mathbf{x} is a (column) vector then \mathbf{x}^T is a row vector:

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \quad \text{then} \quad \mathbf{x}^T = [x_1 \ x_2 \ x_3 \ \cdots \ x_n].
$$

Similarly if \mathbf{x} is row vector then \mathbf{x}^T is a column vector.
Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times n}$ then the sum of A and B is given by

$$A + B = \left\{ a_{ij} + b_{ij} \right\}.$$

This is just the sum of the corresponding entries of the elements of A and B.

For this sum to make sense A and B must be the same size.
Let α be a real number and $A \in \mathbb{R}^{m \times n}$ then the product of α and A is given by

$$\alpha A = \begin{bmatrix} \alpha a_{ij} \end{bmatrix}.$$

Note that this is just α times each entry of A.
There are two types of vector-vector products that arise quite frequently. These can be derived from the definition for matrix-matrix products (discussed later), but it is worth stating them separately.

- Let $x, y \in \mathbb{R}^n$ then the **inner product** or **dot product** of x and y is

$$
\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = \sum_{j=1}^{n} x_j y_j.
$$

Note that the inner product is a single number. The inner product is sometimes denoted by $\mathbf{x} \cdot \mathbf{y}$.
There are two types of vector-vector products that arise quite frequently. These can be derived from the definition for matrix-matrix products (discussed later), but it is worth stating them separately.

- Let $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$ then the **outer product** of \mathbf{x} with \mathbf{y} is

$$\mathbf{xy}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x=my_1 & x=my_2 & \cdots & x=my_n \end{bmatrix}$$

Note that the outer product is a matrix of size m-by-m.
Let $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ then the product of A and x is given by

$$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ a_{m2} \end{bmatrix} + x_3 \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \\ \vdots \\ a_{m3} \end{bmatrix} + \ldots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

(2)

Thus, the product Ax is a linear combination of the columns of A.

Grady B. Wright

Linear Algebra Basics

February 2, 2015
Important observations regarding the matrix-vector product $A\mathbf{x}$:

- The only way for this product to make sense is if A has the same number of columns as \mathbf{x} does rows.
- $A\mathbf{x} \in \mathbb{R}^m$, i.e. the product is a column vector containing m entries.
- If we let $\mathbf{b} = A\mathbf{x}$ then we can alternatively express the ith entry of \mathbf{b} as

$$b_i = \sum_{j=1}^{n} a_{ij}x_j, \quad i = 1, \ldots, m.$$

This illustrates that b_i is just the inner product of the ith row of A with the vector \mathbf{x}.

- In general, computing $A\mathbf{x}$ using the above formulas requires mn multiplications and $m(n - 1)$ additions.
Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, and let B have columns

$$B = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}.$$

The matrix-matrix product $C = AB$ is given as

$$C = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}.$$

This shows the kth column of the product AB is a linear combination of the columns of A with the coefficients in the linear combinations being determined by entries in the kth column of B.
Important observations regarding the matrix-matrix product AB, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$:

- Number rows of A must equal number columns B.
- $AB \in \mathbb{R}^{m \times p}$, i.e. the product is a matrix containing m rows and p columns.
- In general, $AB \neq BA$, i.e. the product does not commute.
Important observations regarding the matrix-matrix product AB, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$:

- We can express each entry of C as

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}, \quad i = 1, \ldots, m, \quad k = 1, \ldots, p.$$

So c_{ik} is just the inner product of the ith row of A with the kth column of B.

- Computing AB using the above formulas requires mnp multiplications and $m(n - 1)p$ additions.

- The transpose of the product AB satisfies: $(AB)^T = B^T A^T$.
Recall that we can express a linear system of equations with m equations and n unknowns as

$$
\begin{align*}
 a_{11} x_1 & + a_{12} x_2 + a_{13} x_3 + \cdots + a_{1n} x_n = b_1, \\
 a_{21} x_1 & + a_{22} x_2 + a_{23} x_3 + \cdots + a_{2n} x_n = b_2, \\
 a_{31} x_1 & + a_{32} x_2 + a_{33} x_3 + \cdots + a_{3n} x_n = b_3, \\
 \vdots & \quad \vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots \quad \vdots \\
 a_{m1} x_1 & + a_{m2} x_2 + a_{m3} x_3 + \cdots + a_{mn} x_n = b_m.
\end{align*}
$$

We can express this linear system in matrix-vector notation using the previous definitions.
Linear systems in matrix-vector notation

Let \(\mathbf{x} \in \mathbb{R}^n \), \(\mathbf{b} \in \mathbb{R}^m \), and \(A \in \mathbb{R}^{m \times n} \), then the linear system is given as \(A \mathbf{x} = \mathbf{b} \), or

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 \vdots \\
 b_m
\end{bmatrix}.
\]
Recall that Ax is a linear combination of the columns of A:

$Ax = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + x_3 \begin{bmatrix} a_{13} \\ a_{23} \\ \vdots \\ a_{m3} \end{bmatrix} + \ldots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$

Thus, the only way there will be a solution to $Ax = b$ is if b can be written as a linear combination of the columns of A.
Linear systems: solvability

There are three possibilities for the linear system $Ax = b$:

1. There are an **infinite number of solutions** that satisfy $Ax = b$.
 An infinite number of ways to linearly combine the columns of A to equal b.

2. There is **one unique solution** to the linear system.
 Only one way to linearly combine the columns of A to equal b.

3. There is **no solution** to the linear system.
 There is no way to linearly combine the columns of A to equal b.

Grady B. Wright
Linear Algebra Basics
February 2, 2015
23 / 39
A diagonal matrix is an n-by-n square matrix with zeros on in every entry except possibly the main diagonal:

$$D = \begin{bmatrix}
d_1 & 0 & 0 & \ldots & 0 \\
0 & d_2 & 0 & \ldots & 0 \\
0 & 0 & d_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & d_n
\end{bmatrix},$$

where $d_j, j = 1, \ldots, n$ are some real numbers.
The identity matrix is a diagonal matrix with every diagonal entry equal to 1:

\[
I = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]

It has the property that for any matrix \(A \in \mathbb{R}^{n \times n} \), \(IA = AI = A \).
A matrix $L \in \mathbb{R}^{m\times n}$ is lower triangular if all the entries above its main diagonal are zero. Square n-by-n lower triangular matrices take the form

$$L = \begin{bmatrix}
\ell_{11} & 0 & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & \ell_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & \ell_{nn}
\end{bmatrix},$$

where $\ell_{i,j}$, $i = 1, \ldots, n$, $j = i, \ldots, n$ are some real numbers.
A matrix $U \in \mathbb{R}^{m \times n}$ is upper triangular if all the entries below its main diagonal are zero. Square n-by-n upper triangular matrices take the form

$$U = \begin{bmatrix}
 u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
 0 & u_{22} & u_{23} & \cdots & u_{2n} \\
 0 & 0 & u_{33} & \cdots & u_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & u_{nn}
\end{bmatrix},$$

where $u_{i,j}$, $i = 1, \ldots, n$, $j = i, \ldots, n$ are some real numbers.
A matrix A is symmetric if $A = A^T$. Note that only square matrices can be symmetric.
Inverse of a matrix

Let A be an n-by-n square matrix (i.e. $A \in \mathbb{R}^{n \times n}$). If there exists a square matrix $B \in \mathbb{R}^{n \times n}$ such that

$$BA = AB = I,$$

where I is the n-by-n identity matrix, then B is called the inverse of A.

- The inverse of A is denoted by A^{-1}.
- If A^{-1} exists then A is called nonsingular, otherwise it is singular.
If A is a square, nonsingular matrix, then the solution to the linear system $Ax = b$ is given formally as

$$x = A^{-1}b.$$

Important: When solving a linear system, one should never first compute A^{-1} and then compute the product $A^{-1}b$. There are much better ways to solve the system (for example using Gaussian *elimination* when n is not too large).
Suppose A is nonsingular then the following statements are true

- A^{-1} is unique
- A^{-1} is nonsingular and its inverse is A
- A^T is nonsingular
- If $B \in \mathbb{R}^{n \times n}$ is nonsingular then AB is nonsingular and $(AB)^{-1} = B^{-1}A^{-1}$
- The linear system $Ax = b$ has a unique solution.
- A vector norm is a scalar quantity that reflects the “size” of a vector x.
- The norm of a vector x is denoted as $\|x\|$.
- There are many ways to define the size of a vector. If $x \in \mathbb{R}^n$, the three most popular are

 - one-norm: $\|x\|_1 = \sum_{k=1}^{n} |x_k|$
 - two-norm: $\|x\|_2 = \sqrt{\sum_{k=1}^{n} |x_k|^2}$
 - ∞-norm: $\|x\|_{\infty} = \max_{1 \leq k \leq n} |x_k|$
However, a vector norm is defined, it must satisfy the following three properties to be called a norm:

1. $\|x\| \geq 0$ and $\|x\| = 0$ if and only if $x = 0$ (i.e. x contains all zeros as its entries).

2. $\|\alpha x\| = |\alpha| \|x\|$, for any constant α.

3. $\|x + y\| \leq \|x\| + \|y\|$, where $y \in \mathbb{R}^n$. This is called the triangle inequality.
Unit vectors

- A vector \mathbf{x} is called a **unit vector** if its norm is one, i.e. $\|\mathbf{x}\| = 1$.
- Unit vectors will be different depending on the norm applied.
- Below are several unit vectors in the one, two, and ∞ norms for $\mathbf{x} \in \mathbb{R}^2$.

(a) One-norm

(b) Two-norm

(c) ∞-norm
A matrix norm is a scalar quantity that reflects the “size” of a matrix $A \in \mathbb{R}^{m \times n}$.

The norm of A is denoted as $\|A\|$.

Any matrix norm must satisfy the following four properties:

1. $\|A\| \geq 0$ and $\|A\| = 0$ if and only if $A = 0$ (i.e. A contains all zeros as its entries).
2. $\|\alpha A\| = |\alpha|\|A\|$, for any constant α.
3. $\|A + B\| \leq \|A\| + \|B\|$, where $B \in \mathbb{R}^{m \times n}$.
4. $\|AB\| \leq \|A\|\|B\|$, where $B \in \mathbb{R}^{n \times p}$. This is called the submultiplicative inequality.
Matrix norms

Each vector norm induces a matrix norm according to the following definition:

$$\|A\|_p = \max_{\|x\|_p \neq 0} \frac{\|Ax\|_p}{\|x\|_p} = \max_{\|x\|_p = 1} \|Ax\|_p,$$

where $x \in \mathbb{R}^n$ and $p = 1, 2, \ldots$.

Induced norms describe how the matrix stretches unit vectors with respect to that norm.
Induced matrix norms

Two popular and easy to define induced matrix norms are

One-norm: \[\|A\|_1 = \max_{1 \leq k \leq n} \sum_{j=1}^{m} |a_{jk}|, \]

\[\|A\|_{\infty} = \max_{1 \leq j \leq m} \sum_{k=1}^{n} |a_{jk}|. \]

- The one-norm corresponds to the maximum of the one norm of every column.
- The \(\infty \)-norm corresponds to the maximum of the one norm of every row.

The two-norm of \(A \) is defined as the *largest eigenvalue* of the matrix \(A^T A \). This is computationally expensive to compute.
Non-induced matrix norms

The most popular matrix norm that is not an induced norm is the Frobenius norm:

$$\|A\|_F = \sqrt{\sum_{j=1}^{m} \sum_{k=1}^{n} |a_{jk}|^2}.$$
Important results on matrix norms

The following are some useful inequalities involving matrix norms. Here $A \in \mathbb{R}^{m \times n}$:

- $\|Ax\| \leq \|A\| \|x\|$
- $\frac{1}{\sqrt{m}} \|A\|_1 \leq \|A\|_2 \leq \sqrt{n} \|A\|_1$
- $\frac{1}{\sqrt{n}} \|A\|_\infty \leq \|A\|_2 \leq \sqrt{m} \|A\|_\infty$
- $\|A\|_2 \leq \sqrt{\|A\|_1 \|A\|_\infty}$