1. **(Approximating derivatives of a function)** In Calculus I, you may have learned that we can approximate a derivative to a function using a formula such as

\[f'(x) \approx \frac{f(x + h) - f(x - h)}{2h} \]

where \(h \) is a small value. This formula approximates the slope of a tangent line to the function \(f(x) \) by finding the slope between the two nearby points \((x - h, f(x - h))\) and \((x + h, f(x + h))\). It is not hard to develop a similar formula for the approximation to the second derivative. A common approximation to \(f''(x) \) is given by

\[f''(x) \approx \frac{f(x - h) - 2f(x) + f(x + h)}{h^2} \]

These formulas are commonly known as **finite difference approximations**.

For this problem, we will apply the above formulas to the function \(f(x) = \cos(x) \).

(a) Create anonymous functions for the exact values of \(f(x), f'(x) \) and \(f''(x) \). Compute the derivatives of \(f(x) \) by hand and code them into your anonymous functions.

(b) Create an array of \(h \) values \(h_i = 2^{-i}, \ i = 0, 1, 2, \ldots, N \) where \(N \) is chosen so that \(1 + 2^{-N} > 1 \) but \(1 + 2^{-(N+1)} = 1 \) (in floating point arithmetic).

(c) Compute vectors containing approximations to the first and second derivatives at the point \(x = 1 \) using the formulas above for the vector of values of \(h_i \).

(d) Compute a vector of errors for each approximation by comparing your approximate values with the exact values \(f'(1) \) and \(f''(1) \).

(e) Plot your errors on a **loglog** plot. Add a title, axis labels and a legend. Use the command \texttt{set(gca,'xdir','reverse')} so that the \(h \) values get smaller going from left to right on your plot. Your final graph should look like the one shown in Figure 1.

(f) Answer this question: “Why do the errors decrease to a point, but then start to grow again for smaller values of \(h \)?”

2. **(Solving a differential equation)** In this problem, we will use finite difference approximation for the second derivative above to solve the differential equation

\[u''(x) = -4\pi^2 \sin(2\pi x) \]

on the interval \([0, 1]\), subject to \(u(0) = u(1) = 0 \).

To do this, we consider the following system of equations.

\[\frac{u_{j-1} - 2u_j + u_{j+1}}{h^2} = -4\pi^2 \sin(2\pi x_j), \quad j = 1, \ldots, N - 1 \]

where the \(x_j \) are equally spaced points in the interval \([0, 1]\), with interval spacing \(h = 1/N \). For boundary conditions, we assume \(u_0 = u_N = 0 \).
(a) Represent this linear system as a tridiagonal system. Use spdiags to create the tridiagonal matrix and use the backslash operator to solve the system for the unknown values u_j. Plot the solution for $N = 100$. Add axes labels and a title. On the same graph, plot the exact solution $u_{exact}(x) = \sin(2\pi x)$. Your approximate solution and the exact solution should be very close.

(b) Create an array of N values in the range $N = 100$ to $N = 5 \times 10^5$ (use logspace). Then, for each N, create a sparse $N \times N$ matrix A used above to solve the differential equation. (Note: Because we are storing the matrix in sparse format, N can be much larger than what you computed in your last homework). Then,

i. For each matrix A, compute the condition number $\kappa(A)$ of A. Store this value in an array. **Hint**: Use the Matlab function condest.

ii. For each matrix A, solve the differential equation as you did in (2a). Compute the error in your approximation as

$$e_N = \frac{\|u - u_{exact}\|_{\infty}}{\|u_{exact}\|_{\infty}}$$

using the norm function with a second argument of \inf. Store this error in an array.

Plot the error you computed above on a loglog plot as a function of N. On the same plot, also include a plot of N^{-2}, $u\kappa(A)$ and uN^2, where u is machine epsilon computed using the Matlab keyword eps. What can you say about scaling of the error and the condition number? Describe a potential downside to solving $u''(x) = f(x)$ using a finite difference approximation.

3. **Function approximation using polynomials** Often, we want to replace a complicated function (one that involves expensive function evaluations, for example) with a polynomial. The question then becomes, what is the best way to approximate a function with a polynomial? This is a topic of a specialized area of mathematics called approximation theory.
You learned in Calculus that if we have enough derivatives of a function, we can construct a Taylor polynomial centered at a single point \(x = c \). The disadvantage of this approach is that we might not have the needed derivatives (they might be too difficult to compute, for example). Another approach to creating a polynomial approximation is to use only the function value (no derivatives) at several points along an interval of interest.

In this problem, we will use this approach to find a polynomial approximation to the function
\[
f(x) = \frac{1}{1 + 25x^2}
\]
over the interval \([-1, 1]\). To see how different choices of points can lead to very different polynomials, you will create a polynomial using two sets of interpolation points, which you will construct below.

You will construct a set of 20 points \(x_j, j = 1, 2, \ldots, 20 \) on the interval \([-1, 1]\). In each case, you will have \(x_1 = -1 \), and \(x_{20} = 1 \). In between -1 and 1, the points will be spaced differently, as described below. Evaluate the function \(f(x) \) at the \(x_j \) to create values \(y_j = f(x_j) \). Then, using the Matlab command \texttt{polyfit}, obtain the coefficients of the polynomial that interpolates \((x_j, y_j)\). Using \texttt{polyval}, evaluate the polynomial at enough points to create a smooth curve and show how the polynomial behaves between your interpolation points.

For each of the two set of points (described below), create a plot of \(f(x) \), your polynomial approximation, and the interpolation points. Each plot should show clearly that your polynomial approximation and \(f(x) \) agree at the interpolation points. Add a legend, title (appropriate for the set of points used) and axis labels to each plot. Use \texttt{xlim} and \texttt{ylim} to make sure your axis limits are \([-1, 1] \times [0, 1]\).

The two sets of points \(x_j \) to use are

(a) An array of 20 equally spaced points \(x_j, j = 1, 2, \ldots, 20 \) on the interval \([-1, 1]\).

(b) An array \(x \) of 20 points \(x_j = -\cos(t_j) \) where the \(t_j \) are equally spaced in the interval \([0, \pi]\). These are called “Chebyschev” nodes.
What can you say about the quality of each approximation? Does one do a better job than the other?

For this problem, you will use the functions \texttt{linspace}, \texttt{polyfit}, and \texttt{polyval}.

4. **(Polynomial data fitting)** Determine the coefficients of polynomial curve fits of up to degree four for the density of saturated liquid water as a function of temperature. The data are in the \texttt{H2Odensity.dat} file on the course website.

 (a) Plot the data and the 4th degree polynomial that you found.
 (b) For each polynomial $p_n(T)$ you obtain, also compute the maximum error as defined by

 $\| e_n \|_\infty = \max_{1 \leq i \leq N} |p_n(T_i) - \rho_i|$

 where T_i is the temperature data, ρ_i is the density data, and N is the number of data points in the data file. To compute the error, you can use the \texttt{norm} function. For example,

 \begin{equation}
 \text{err}(n) = \text{norm}(p_n - \rho, \text{Inf})
 \end{equation}

 where p_n is the polynomial you found evaluated at the data points T_i and ρ_i are the measured values of density. Write the four errors you obtain to a file \texttt{polyerror.out}.