Orthogonality and Projections

Math 301
Complementary spaces

We saw that there are four fundamental subspaces associated with the matrix $A \in \mathbb{R}^{m \times n}$.

- The column space and null space $C(A)$ and $N(A)$ of A.
- The column space and null space $C(A^T)$ and $N(A^T)$ of A^T.

Question: The column space of A may not fill out all of \mathbb{R}^m. Can we find the “missing” vectors needed to form a basis for all of \mathbb{R}^m?

Question: The null space of A may not fill out all of \mathbb{R}^n. Where are those missing basis vectors?
Complementary subspaces

For matrix $A \in \mathbb{R}^{m \times n}$, with rank r:

- The dimension of $C(A)$ is $\ldots \ r$
- The dimension of $N(A)$ is $\ldots \ n - r$
- The dimension of $C(A^T)$ is $\ldots \ r$
- The dimension of $N(A^T)$ is $\ldots \ m - r$

Guess:

To construct a basis for \mathcal{R}^{m} we could use the r basis vectors of $C(A)$ and the $m - r$ basis vectors of $N(A^T)$.
Complementary subspaces

For matrix $A \in \mathbb{R}^{m \times n}$, with rank r:

The dimension of $C(A)$ is \ldots r

The dimension of $N(A)$ is \ldots $n - r$

The dimension of $C(A^T)$ is \ldots r

The dimension of $N(A^T)$ is \ldots $m - r$

Guess:

To construct a basis for \mathbb{R}^n we could use the r basis vectors of $C(A^T)$ and the $n - r$ basis vectors of $N(A)$.

True!
Two vectors \mathbf{u} and \mathbf{v} are called **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$ or equivalently, if $\mathbf{u}^T \mathbf{v} = 0$.

Two *subspaces* \mathbf{U} and \mathbf{V} are orthogonal if for every $\mathbf{u} \in \mathbf{U}$ and $\mathbf{v} \in \mathbf{V}$, \mathbf{u} and \mathbf{v} are orthogonal, e.g. $\mathbf{u}^T \mathbf{v} = 0$.

Example:

For a matrix A, the subspace $N(A)$ is orthogonal to $C(A^T)$.

Suppose $A\mathbf{x} = \mathbf{0}$. Then $\mathbf{x} \in N(A)$. Also, \mathbf{x} is orthogonal to the rows of A, e.g. \mathbf{x} is orthogonal to every vector in $C(A^T)$.
Example:

For a matrix A, the subspace $N(A^T)$ is orthogonal to $C(A)$.
Suppose $A^T \mathbf{x} = 0$. Then $\mathbf{x} \in N(A^T)$. Also, \mathbf{x} is orthogonal to the columns of A, e.g. \mathbf{x} is orthogonal to every vector in $C(A)$.

In both examples, the subspaces are *complements* of each other.

The subspace $N(A)$ contains *every* vector that is orthogonal to $C(A^T)$, and the subspace $N(A^T)$ contains every vector that is orthogonal to $C(A)$.

Fundamental Theorem of Linear Algebra

- $N(A)$ is the orthogonal complement of the row space $C(A^T)$ (in \mathbb{R}^n).

- $N(A^T)$ is the orthogonal complement of the column space $C(A)$ (in \mathbb{R}^m).

Given a matrix $A \in \mathbb{R}^{m \times n}$, every vector x in \mathbb{R}^n can be written as the sum of something from $C(A^T)$ plus something from $N(A)$.

$$x = x_R + x_N, \quad x_R \in C(A^T), \quad x_N \in N(A)$$

The analogous claim holds for vectors from \mathbb{R}^m.
In this light, the solvability of \(Ax = b \) can be rephrased as:

- Find an \(\hat{x} \) so that \(A\hat{x} \) in \(C(A) \) is ”closest” to \(b \).
- \textit{Project} the vector \(b \) onto \(C(A) \).
- Find only those components of \(b \) that are in \(C(A) \).
Decompose \(b \) into a “projection” piece \(p \) and an error piece \(e \). Note that the error piece \(e \) cannot be made any smaller.

\[
\mathbf{b} = \mathbf{p} + \mathbf{e}
\]

Find \(\mathbf{x} \) such that \(\mathbf{a} \cdot (\mathbf{b} - \mathbf{x} \mathbf{a}) = 0 \)

\[
\hat{x} = \frac{\mathbf{b}^T \mathbf{a}}{\mathbf{a}^T \mathbf{a}}, \quad \text{(scalar)}
\]

\(\mathbf{b} \) is not in the column space of \(\mathbf{a} \) and so we find the best approximation to \(\mathbf{b} \) in \(\mathbf{a} \).
Find \hat{x} such that $A^T(b - A\hat{x}) = 0$

$$\hat{x} = (A^T A)^{-1} A^T b$$

The vector $p = A\hat{x}$ is in $C(A)$.

The vector $e = b - A\hat{x}$ is in $N(A^T)$.