All of your work for this assignment should be turned in using Jupyter Notebooks. Please turn in a PDF of the results run on your laptop or desktop, or cluster, if indicated. Your should develop one notebook for each problem.

Undergraduate students may do the Graduate student problems for extra credit.

1. (Using a Pool of workers (Python)) Update the Pool example (on the class website) to speed-up the code in the notebook. More instructions are given notebook. You should be able to get a speed-up factor of somewhere between 5 and 10.

2. (Trapezoidal rule) Approximate the following definite integral using the Trapezoidal Rule. Your code should run on 1, 2, 4, and 8 processors.

 \[I = \int_{-1}^{1} (x - 1)^2 e^{-x^2} \, dx \]

 (a) Use Wolfram Alpha (www.wolframalpha.com) to find the exact expression for definite integral above. The correct expression will involve \(e \), \(\pi \), and the function \(\text{erf}(x) \).

 (b) Verify that your code is correct by running it on a sequence of intervals \(N = 2^p \), for \(p = 10, 11, 12, \ldots, 28 \). Verify that your results are correct by showing numerical convergence, and show performance results by showing plots of strong and weak scaling and efficiency. You may use the notebooks on the course website to get started with this.

3. (Integral equation) You have probably learned that a standard approach to solving the second order differential equation

 \[u''(x) = f(x) \]

 with appropriate boundary conditions for a given function \(f(x) \) is to subdivide the domain into \(N \) intervals of width \(h \), and then, using a finite difference discretization, construct and solve a linear system \(Au = f \). The advantage of this approach is that the matrix \(A \) is tridiagonal matrix and so the linear system can solved very efficiently (using, for example, the Thomas Algorithm). The chief disadvantage of the finite difference approach is that ill-conditioning in the matrix \(A \) eventually leads to round-off error which swamps the truncation error in the discretization, making the solution unusable for very large \(N \). Also, it isn’t obvious how to parallelize Gaussian elimination.

 Below, we will use a different approach to solving the above differential equation which parallelizes in an obvious way, and which solves the round-off error problem.

 We avoid the ill-conditioning by using an explicit formula for the solution to (1). Over the interval \([0, 1]\), the exact solution to (1) can be written in terms of two integrals as

 \[u(x) = \left(a - \int_0^x \xi f(\xi) \, d\xi \right) (1 - x) + \left(b + \int_x^1 (\xi - 1) f(\xi) \, d\xi \right) x \]

 where \(u(0) = a \) and \(u(1) = b \) are the prescribed boundary conditions. This method also parallelizes in an obvious way, as we saw in Problem 2.

 For this problem, Use the trapezoidal rule to numerically evaluate (2) on a subdivided mesh with \(N = 2^p \) subintervals. Choose a range of \(p \) large enough to see good scaling results. Your code should run on 1, 2, 4,8 and 16 processors. Set \(f(x) = -(2\pi)^2 \sin(2\pi x) \) and \(a = b = 0 \).

 (a) (Check the solution) Differentiate (2) twice to convince yourself that (2) is an exact solution to (1). You do not need to turn this in, but you should be convinced before you move to the next problem.
(b) (Verify.) For a choice of \(N \), plot solution you get evaluating (2) using the Trapezoidal method along with an exact solution on the same graph. Plot the error for several values of \(N \) to show that your solution is converging to the true solution.

(c) (Scaling results) Show weak scaling, strong scaling and efficiency results for this approach to solving the second order differential equation.

(d) (Graduate students.) Compare the error that you get from solving the integral equation with the error you get from solving the \(Ax = b \) problem. You should see that the error for the integral solution decreases even for very large \(N \), unlike the solution resulting from inverting the matrix \(A \). To produce the errors for the linear solve, you may use MATLAB. Compare the timing results for both approaches as well.

(e) (Graduate students) Develop a fourth order solver by using Simpson’s rule to evaluate the integral equation. How does the scaling for the higher order integral compare to the lower order method?