A New Basis for the Solution of the One-Dimensional Transport Equation

Stephen H. Brill

Department of Mathematics
Boise State University
Boise, Idaho, U.S.A.

http://math.boisestate.edu/~brill
OUTLINE

1. Introduction

2. The problem and its “exact” solution

3. Our new family of solutions

4. Computational examples

5. Summary and conclusions

6. Present and future work
1. Introduction

- We introduce a new family of functions that satisfies the one-dimensional transport equation.

- We demonstrate that this new family is capable of providing very accurate solutions to the transport equation.
2. The problem and its “exact” solution

• We study a family of solutions $u(t,x)$ of the partial differential equation (PDE)

\[
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - v \frac{\partial u}{\partial x}
\]

(1)

with boundary conditions

\[
u(t,0) = 1
\]

\[
\lim_{x \to \infty} u(t,x) = 0
\]

and initial condition

\[
u(0,x) = 0.
\]

• The coefficients D and v are positive and constant.
• This system has the exact solution (found using method of Laplace transforms):

\[
u(t, x) = \frac{1}{2\sqrt{D\pi}} x \exp \left(\frac{v}{2D} x \right) \times \int_0^t \exp \left(-\frac{v^2 \tau}{4D} - \frac{x^2}{4D\tau} \right) d\tau
\]

• We will use this exact solution for comparison purposes.
example of $u(t, x)$ with $v = D = 1$.

- It is clear that we have here

$$\frac{\partial u}{\partial t} > 0 \quad \text{and} \quad \frac{\partial u}{\partial x} < 0.$$
3. Our new family of solutions

- We have discovered that functions of the form

\[\hat{u}(t, x) = p + q \exp(k(x + \alpha vt)) \] \hspace{1cm} (2)

satisfy the PDE (1).

- Here \(\alpha \), \(p \), and \(q \) are constants and

\[k = \frac{v}{D}(\alpha + 1). \]
• We compute the partial derivatives of (2) and recall the conditions

\[
\frac{\partial u}{\partial t} > 0 \quad \text{and} \quad \frac{\partial u}{\partial x} < 0.
\]

• If we apply these conditions to (2), we see that we require

\[
q < 0 \quad \text{and} \quad -1 < \alpha < 0
\]

or

\[
q > 0 \quad \text{and} \quad \alpha < -1.
\]

• Thus we have constraints on how we may select \(\alpha \) and \(q \).
Graphical representation of the constraints

$q < 0$ and $-1 < \alpha < 0$

or

$q > 0$ and $\alpha < -1$
• Because its exponential nature, a single trial function

\[\hat{u}(t, x) = p + q \exp(k(x + \alpha vt)) \]

cannot hope to capture the shape of the exact solution.

• So we use a piecewise version of \(\hat{u}(t, x) \) to capture this shape.
4. Computational examples

- In these examples, we choose $v = D = 1$.

- We consider separately curves over which each of t and x is fixed.

- The “breakpoints” for the piecewise curves are chosen so that the exact solution has value $1/2$ at these locations.
In these examples, we select the values of α, p, and q to solve the “minimax” problem. That is, we find \mathcal{M} defined by

$$
\mathcal{M} = \min_w \max_{x \in [a_x, b_x]} |u(10, x) - \tilde{u}(10, x, w)|
$$

or

$$
\mathcal{M} = \min_w \max_{t \in [a_t, b_t]} |u(t, 10) - \tilde{u}(t, 10, w)|,
$$

where

$$
w = \begin{bmatrix}
\alpha \\
p \\
q
\end{bmatrix},
$$

and such that α and q are subject to the constraints given earlier.
Example 1

\[t = 10, \ x \in [0, 10.9] \]

\[\mathbf{w} = \begin{bmatrix} \alpha \\ p \\ q \end{bmatrix} = \begin{bmatrix} -0.6 \\ 1.0 \\ -0.08 \end{bmatrix} \]

\[\mathcal{M} = 0.0685 \]
Example 2

\[t = 10, \ x \in [10.9, 25] \]

\[
\mathbf{w} = \begin{bmatrix} \alpha \\ p \\ q \end{bmatrix} = \begin{bmatrix} -1.28 \\ 0 \\ 0.304 \end{bmatrix}
\]

\[\mathcal{M} = 0.0237 \]
Example 3

$x = 10, \ t \in [0, 9.1]$

\[
\mathbf{w} = \begin{bmatrix}
\alpha \\
\ p \\
\ q
\end{bmatrix} = \begin{bmatrix}
-1.29 \\
-0.02 \\
\qquad 0.34
\end{bmatrix}
\]

\[
\mathcal{M} = 0.0432
\]
Example 4

\[x = 10, \ x \in [9.1, 25] \]

\[
w = \begin{bmatrix} \alpha \\ p \\ q \end{bmatrix} = \begin{bmatrix} -0.61 \\ 1 \\ -0.09 \end{bmatrix}
\]

\[M = 0.0100 \]
5. Summary and conclusions

- Herein we introduced a family of functions

\[\hat{u}(t, x) = p + q \exp \left(\frac{v}{D} (\alpha + 1)(x + \alpha vt) \right) \]

each member of which is a solution of the PDE

\[\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - v \frac{\partial u}{\partial x}. \]

- By carefully choosing values of \(\alpha, \ p, \) and \(q, \) good agreement with the exact solution of the PDE (with appropriate boundary and initial conditions) can be obtained.
6. Present and future work

- Improve “minimax” algorithm to obtain superior accuracy.

- Use combinations of our functions in such a way as to satisfy initial and boundary conditions associated with the PDE.

- Use these functions as basis functions in a finite element approach to numerically solve our PDE.